• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.025 seconds

Neuro-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴로-퍼지 제어기)

  • 박영철;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.395-400
    • /
    • 2000
  • In this paper, we propose a new neuro-fuzzy controller based on reinforcement learning. The proposed system is composed of neuro-fuzzy controller which decides the behaviors of an agent, and dynamic recurrent neural networks(DRNNs) which criticise the result of the behaviors. Neuro-fuzzy controller is learned by reinforcement learning. Also, DRNNs are evolved by genetic algorithms and make internal reinforcement signal based on external reinforcement signal from environments and internal states. This output(internal reinforcement signal) is used as a teaching signal of neuro-fuzzy controller and keeps the controller on learning. The proposed system will be applied to controller optimization and adaptation with unknown environment. In order to verifY the effectiveness of the proposed system, it is applied to collision avoidance of an autonomous mobile robot on computer simulation.

  • PDF

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

Neuro-Fuzzy Controller Design of DSP for Real-time control of 3-Phase induction motors (3상 유도전동기의 실시간 제어를 위한 DSP의 뉴로-퍼지 제어기 설계)

  • Lim, Tae-Woo;Kang, Hack-Su;Ahn, Tae-Chon;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2286-2288
    • /
    • 2001
  • In this paper, a drive system of induction motor with high performance is realized on the viewpoint of the design and experiment, using the DSP (TMS320F240). The speed controller for induction motor drive system is designed on the basis of a neuro-fuzzy network. The neuro-fuzzy controller acts as a feed-forward controller that provides the right control input for the plant and accomplishes error back-propagation algorithm through the network. The proposed network is used to achieve the high speedy calculation of the space vector PWM (Pulse Width Modulation) and to build the neuro-fuzzy control algorithm, for the real-time control. The proposed neuro-fuzzy algorithm on the basis of DSP shows that experimental results have good performance for the precise speed control of an induction motor drive system. It is confirmed that the proposed controller could provide more improved control performance than conventional v/f vector controllers through the experiment.

  • PDF

A Comparison of Different Intelligent Control Techniques For a PM dc Motor

  • Amer S. I.;Salem M. M.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and insensitive to load disturbances.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Adaptive Multi-mode Vibration Control of Composite Beams Using Neuro-Controller (신경망 제어기를 이용한 복합재 보의 다중 모드 적응 진동 제어)

  • Yang, Seung-Man;Rew, Keun-Ho;Youn, Se-Hyun;Lee, In
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • Experimental studies on the adaptive multi-mode vibration control of composite beams have been performed using neuro-controller. Neuro-controllers require too much computational burden, which blocks wide real-time applications of neuro-controllers. Therefore, in this paper, an adaptive notch filter is proposed to separate a vibration signal into each modal vibration signal. Two neuro-controllers with fewer weights are connected to the corresponding modal signals to generate proper modal control forces. The vibration controls using the adaptive notch filter and neuro-controllers have been performed for two specimens. A and B, which have different natural frequencies because of different positions of tip masses. Significant vibration reduction has been observed in both cases. The vibration control results show that the present neuro-controller has good adaptiveness under the system parameter variations.

  • PDF