• 제목/요약/키워드: neural signal processing

검색결과 324건 처리시간 0.025초

DC서보계에서 2중신경망을 이용한 확대 PID 제어기의 위치제어 (The Position Control Of Expended PID Controller Using Double-Layers Neural Network In DC Servo System)

  • 이정민;하홍곤
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.105-108
    • /
    • 2000
  • Many control techniques have been proposed in order to improve the control performance of discrete-time domain control system. In the position control system using a DC servo motor as a driver, the response-characteristic of system is controlled by the PID controller. In the PID control system, the transient response characteristic is more increased and settling time gets longer if gains of PID controller are unsuitable. In this paper, therefore, a expended PID control system is constructed by inserting a pre-compensator at output terminal of PID controller. It is implemented by using the double layers neural network. Form the results of computer simulation in the proposed control algorithm, its usefulness is verified.

  • PDF

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.

신경회로망을 이용한 공작기계 주축용 베어링의 고장검지 (Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Deep Compression의 프루닝 문턱값 동적 조정 (Dynamic Adjustment of the Pruning Threshold in Deep Compression)

  • 이여진;박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권3호
    • /
    • pp.99-103
    • /
    • 2021
  • 최근 CNN(Convolutional Neural Network)이 다양한 컴퓨터 비전 분야에서 우수한 성능으로 널리 사용되고 있다. 그러나 CNN은 계산 집약적이고 많은 메모리가 요구되어 한정적인 하드웨어 자원을 가지는 모바일이나 IoT(Internet of Things) 기기에 적용하기 어렵다. 이런 한계를 해결하기 위해, 기존의 학습된 모델의 성능을 최대한 유지하며 네트워크의 크기를 줄이는 인공신경망 경량화 연구가 진행되고 있다. 본 논문은 신경망 압축 기술 중 하나인 프루닝(Pruning)의 문턱값을 동적으로 조정하는 CNN 압축 기법을 제안한다. 프루닝될 가중치를 결정하는 문턱값을 실험적, 경험적으로 정하는 기존의 기술과 달리 정확도의 저하를 방지하는 최적의 문턱값을 동적으로 찾을 수 있으며, 경량화된 신경망을 얻는 시간을 단축할 수 있다. 제안 기법의 성능 검증을 위해 MNIST 데이터 셋을 사용하여 LeNet을 훈련시켰으며, 정확도 손실 없이 약 1.3 ~ 3배의 시간을 단축하여 경량화된 LeNet을 얻을 수 있었다.

점증적 증가를 이용한 첨점 기반의 간질 검출 (Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method)

  • 이상홍
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.287-293
    • /
    • 2015
  • 본 논문에서는 신호 처리 기술과 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Functions; NEWFM)을 이용하여 간질을 검출하는 방안을 제안하였다. 신호 처리 기술로는 웨이블릿 변환(Wavelet Transform), 점증적 증가 방법, 위상공간 재구성(Phase Space Reconstruction)을 이용하였다. 신호 처리 기술의 첫 번째 단계에서는 웨이블릿 변환을 이용하여 뇌파로부터 웨이블릿 계수를 추출하였다. 두 번째 단계에서는 점증적 증가 방법을 이용하여 웨이블릿 계수로부터 첨점(Peak)을 추출하였다. 세 번째 단계에서는 위상공간 재구성을 이용하여 추출된 첨점으로부터 3차원 다이어그램을 생성하였다. NEWFM의 입력으로 사용할 16개의 특징을 추출하기 위하여 유클리드 거리와 통계적 방법을 이용하였다. 이들 16개의 특징을 NEWFM의 입력으로 사용하여 97.5%, 100%, 95%의 정확도, 특이도, 민감도를 각각 구하였다.

퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구 (A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator)

  • 김동희;이수흠;신위재
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.

  • PDF

퍼지 ART 신경망을 이용한 내용기반 영상검색 (Contents-based Image Retrieval using Fuzzy ART Neural Network)

  • 박상성;이만희;장동식;김재연
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2003
  • 본 논문은 퍼지 ART 신경망 알고리즘을 이용하여 내용기반 영상을 검색하는 연구를 제시한다. 대용량의 영상 데이터베이스를 검색할 때, 클러스터링은 빠른 검색을 위해 중요하다. 그러나 많은 양의 영상 데이터를 적절하게 클러스터링 하는 것은 상당히 어렵다. 기존의 유사도에 따른 검색 방법은 검색의 정확도가 떨어지고 검색시간이 많이 걸리는 단점이 있기 때문에 이러한 단점을 보완하는 방법이 필요하다. 본 논문에서는 앞서 언급한 문제점을 보완하기 위하여 신경망 알고리즘을 사용한 내용기반 영상검색 시스템을 제안한다. 퍼지 ART 신경망 알고리즘을 사용한 본 검색 시스템에서는 색상과 질감을 검색에 필요한 특징치로 잡아 데이터를 0과 1사이의 데이터로 정규화 하여 신경망 알고리즘의 입력 데이터로 넣어서 영상을 클러스터링 한 후 검색을 실시하였다 300개의 영상을 가지고 실험한 결과 약 87%의 검출률을 보여 주었다.

  • PDF

확률론적 의사결정기법을 이용한 태양광 발전 시스템의 고장검출 알고리즘 (Fault Detection Algorithm of Photovoltaic Power Systems using Stochastic Decision Making Approach)

  • 조현철;이관호
    • 융합신호처리학회논문지
    • /
    • 제12권3호
    • /
    • pp.212-216
    • /
    • 2011
  • 태양광 발전 시스템의 고장검출은 고장으로 인해 발생되는 기술적 및 경제적 손실을 최대한 줄이기 위한 첨단 기술로 각광을 받고 있다. 본 논문은 푸리에 신경회로망과 확률론적 의사결정법을 이용한 태양광 발전 시스템의 새로운 고장진단 알고리즘을 제안한다. 우선 태양광 시스템의 동적 모델링을 위하여 최급강하 기반 최적화 기법을 통해 신경회로망 모델을 구성하며 GLRT 알고리즘을 이용하여 태양광 시스템의 확률론적 고장검출 기법을 제안한다. 제안한 고장검출 알고리즘의 타당성 검증을 위하여 태양광 고장검출 테스트베드를 제작하여 실시간 실험을 실시하였으며 이 때 태양광으로부터의 신호는 직류 전력선 통신을 이용하였다.

신경망을 이용한 언어장애인용 문장발생장치의 동사예측 (Verb Prediction for Korean Language Disorders in Augmentative Communicator using the Neural Network)

  • 이은실;민흥기;흥승홍
    • 융합신호처리학회논문지
    • /
    • 제1권1호
    • /
    • pp.32-41
    • /
    • 2000
  • 본 논문에서는 언어장애인용 문장발생장치의 통신율을 증진시키기 위한 처리방안으로 신경망을 이용하여 문장발생장치에 통사예측을 적용하는 방법을 제안하고 유용성을 확인하였다. 각 단어들은 구문론과 의미론에 따른 정보벡터로 표현되었으며 언어처리는 전통적으로 사전을 포함하는 방법과는 다르게 상태공간에서 다양한 영역으로 분류되어 개념적으로 유사한 단어는 상태공간에서의 위치를 통하여 알게 된다. 사용자가 의미심볼을 누르면 의미심볼에 해당하는 단어는 상태공간에서의 위치를 찾아가며 입력에 따른 동사예측의 중복성을 막기 위하여 신경망을 이용하여 클래스화한 후 동사를 예측하였고 그 결과 제한된 공간 내에서 약 $20\%$ 통신율 증진을 가져올 수 있었다.

  • PDF

EEG 분석과 분류시스템 (EEG Analysis and Classification System)

  • 정대영;김민수;서희돈
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.263-270
    • /
    • 2004
  • 최근 웨이블릿 변환은 많은 분야에서 다양하게 적용된다. 본 논문에서 tasks뇌파의 중요한 몇가지 특성파 검출을 위한 다비치 웨이블릿은 뇌파분석에 필요하다. 우리가 제안한 시스템은 다른 방법보다는 특성파 검출에 높은 성능을 가졌다. 본 연구의 뉴럴시스템의 구조는 하나의 은닉층과 3계층 피드포워드층은 오류 BP 학습알고리즘을 적용하였다. 4명의 피험자에게 알고리즘을 적용하여 92% 분류율을 보였다. 제안된 시스템은 웨이블릿과 신경망으로 tasks 뇌파의 보다 정확하게 분석함을 보였다. 모의실험결과 tasks 뇌파는 의사의 노동력을 줄일수 있고 정량적 해석이 가능함을 보였다.

  • PDF