• Title/Summary/Keyword: neural signal processing

Search Result 320, Processing Time 0.02 seconds

Neural Network Approaches and Trends for Speech Recognition (음성 인식을 위한 신경회로망 접근과 동향)

  • 김순협
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.33-41
    • /
    • 1995
  • We proposed the approach method of neural network for signal processing, especially speech signal processing and reviewed the algorithms for several neural networks which are used for many alppication field in speech processing. Finally, investigated the trends in neural network method through 3 conference jounal and the ASK jounal in 1994.

  • PDF

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Study and Experimentation on Detection of Nicks inside of Porcelain with Acoustic Emission

  • Jin, Wei;Li, Fen
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1572-1579
    • /
    • 2006
  • An usual acoustic emission(AE) event has two widely characterized parameters in time domain, peak amplitude and event duration. But noise in AE measuring may disturb the signals with its parameters and aggrandize the signal incertitude. Experiment activity of detection of the nick inside of porcelain with AE was made and study on AE signal processing with statistic be presented in this paper in order to pick-up information expected from the signal with noise. Effort is concentrated on developing a novel arithmetic to improve extraction of the characteristic from stochastic signal and to enhance the voracity of detection. The main purpose discussed in this paper is to treat with signals on amplitudes with statistic mutuality and power density spectrum in frequency domain, and farther more to select samples for neural networks training by means of least-squares algorithm between real measuring signal and deterministic signals under laboratory condition. By seeking optimization with the algorithm, the parameters representing characteristic of the porcelain object are selected, while the stochastic interfere be weakened, then study for detection on neural networks is developed based on processing above.

  • PDF

Signal processing of multichannel FET type electrolyte sensors using neural network (신경회로망을 이용한 다중채널 FET형 전해질 센서의 신호처리)

  • 이정민;이창수;손병기;이은석;이흥락
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.148-155
    • /
    • 1997
  • Ths signal processing technqiue of FET type electrolyte sensors using the back propagation neural network was studied to reduce the interference effects of the different electrolytes. The FET-type electrolyte sensors, pH-ISFET, K-ISFET, and Ca-ISFET, were prepared to measure the pH, K, and Ca electrolytes. Neural network consisted of three layers was learned with 8 patterns and 9 patterns. The sensor output obtained with arbitrary concentrations was processed by the learned neural network. The errors obtained from calibration curve for pH, K, and Ca were .+-.0.039 pH, .+-.2.508 mmol/l, and .+-.1.807 mmol/l, respectively, without considering the interference effects. The errors of the network output for pH, K, and Ca were reduced to .+-.0.005 pH, .+-.0.436 mmol/l, and .+-.0.381 mmol/l in case of 9 patterns, respectively. the signal processing using the neural network can reduce the errors ofthe electrolyte sensor outputs caused by the interference effect, thereby providing effectiveness in the improvement of the sensor selectivity.

  • PDF

Nonlinear Prediction using Gamma Multilayered Neural Network (Gamma 다층 신경망을 이용한 비선형 적응예측)

  • Kim Jong-In;Go Il-Hwan;Choi Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as system identification and signal prediction. This paper proposes the gamma neural network(GAM), which uses gamma memory kernel in the hidden layer of feedforward multilayered network, to improve dynamics of networks and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The proposed network is evaluated in nonlinear signal prediction and compared with feedforword(FNN) and recurrent neural networks(RNN) for the relative comparison of prediction performance. Simulation results show that the GAM network performs better with respect to the convergence speed and prediction accuracy, indicating that it can be a more effective prediction model than conventional multilayered networks in nonlinear prediction for nonstationary signals.

  • PDF

Noise reduction system using time-delay neural network (시간지연 신경회로망을 이용한 잡음제거 시스템)

  • Choi Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.121-128
    • /
    • 2005
  • On the research field for speech signal, neural network mainly uses for the category classification in speech recognition and applies to signal processing. Accordingly, this paper proposes a noise reduction system using a time-delay neural network, which implements the mapping from the space of speech signal degraded by noise to the space of clean speech signal. It is confirmed that this method is effective for speech degraded not only by white noise but also by colored noise using the noise reduction system, which restores the amplitude component of fast Fourier transform.

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement (비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리)

  • Won Yeol Yoon;Nam Kyu Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

A Study on Signal Processing Method for Welding Current in Automatic Weld Seam Tracking System (용접선 자동추적시 용접전류 신호처리 기법에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.102-110
    • /
    • 1998
  • The horizontal fillet welding is prevalently used in heavy and ship building industries to fabricate the large scale structures. A deep understanding of the horizontal fillet welding process is restricted, because the phenomena occurring in welding are very complex and highly non-linear characteristics. To achieve the satisfactory weld bead geometry in robot welding system, the seam tracking algorithm should be reliable. The number of seam tracker was developed for arc welding automation by now. Among these seam tracker, the arc sensor is prevalently used in industrial robot welding system because of its low cost and flexibility. However, the accuracy of arc sensor would be decreased due to the electrical noise and metal transfer. In this study, the signal processing algorithm based on the neural network was implemented to enhance the reliability of measured welding current signals. Moreover, the seam tracking algorithm in conjunction with the signal processing algorithm was implemented to trace the center of weld line. It was revealed that the neural network could be effectively used to predict the welding current signal at the end of weaving.

  • PDF

Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks (Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식)

  • 박준근;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • In this paper, we presented a new approach to the recognition of unconstrained handwritten numerals using an improved RBF(Radial Basis Function) Neural Networks. The RBF Neural Networks used Raised Cosine as a basis function to improve discrimination and reduce processing time. The performance of Raised Cosine RBF Neural Networks classifier was evaluated using totally unconstrained handwritten numeral database of Concordia University, Montreal, Canada, and the experimental results showed the recognition rate of 98.05%.

  • PDF