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ABSTRACT

We proposed the approach method of neural network 

for Signal Processing, especially speech signal 

processing and reviewed the algorithms for several 

neural networks which are used for many alppication 

fi이d in speech processing. Finally, investigated the 

trends in neural network method through 3 confemce 

jounal and the ASK (AcousticalSociety of Korea) jounal 

in 1994.

1. Introduction

Neural network have become a very popular field of 

research in cognitive science, neurobiology, computer 

engineerin 응/science, signal processing, optics, and 

physics. They present a very broad range of neural 

processing mod이s. An aitificial neural network is an 

abstract simulation of a real nervous system that 

contains a collection of neuron units communicating 

with e 거 ch other via axon connections. The first 

fundamental modeling of neural nets was proposed in 

1943 by McCulloch and Pitts in terms of a 

computational model of "nervous activity". 1'he 

McCulioch-Pitts neuron is a binary device and each 

neuron has a fixed threshold, thus performing simple 

threshold logic. The McCulloch-Pitts model lead the 

works of John Neumann, Marvin Minsky, Frank 

Rosenblatt, and many others. Hebb postulated that the 

neurons were appropriately interconnected by 

self-organization and that "an existing pathway 

strengthens the connections between the neurons". The 

neural models can be divided into two categories： 1) 

The biological type. 2) The application-driven.

1.1 Biologicalyix? Neural Networks

Tha main objective of biological-type neural nets is to 

dev이ope a synthetic element for verifing hypotheses 

concerning biological systems. A simplified sketch of a 

natural neural network is illustrated in Figure 1. There 

are three parts in a neuron : (1) a neuron cell body (2) 

branching extensions called dendrites for receiving 

input, and (3) an axon that carries the neuron's output 

to the dendrites of other neurons. The synapse 

renrosents the junction between an axon and a dendrite. 

The process of neurons is often modeled as a 

propagation rule represented by a net value u( • ), cf.

Figure 1. A simplified sketch of biological neurons

Figure 가a). The neuron function can be modeled as a 

simple threshold function ft •).

1.2 Application-Driven Neural Networks

In general, neurons and axons are mathematically 

modeled by activation functions and net functions(or 

basis function) respectiv 이 y, cf. Figure 2(b). The 

selection of these functions often depends on the 

applications the neural mod시s are for. The strength of 

application -diiven neural networks hinges upon three 

main characteristics： (1) Adaptiveness and 

self-organization ⑵ Nonlinetir network processing (3) 

Parall이 processing. These characteristics have played 

an important role in neural network's applicabilities to 

signal processing and analysis.

(a) (b)

Figure 2. (a) A sim이fied neural model wittth linear net 

function and a threshold neuron function.

(b) A general neural mod이

Net function u( • ) Activation function jl •)

2. Applications, Algorithms and Architectures

In order to have an integrated understanding on neural 

networks, we review applications, algorithm and 

architecture.
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2.1 Ap이ication Paradigms of Neural Mod이s

The application domains of neural nets can be roughly 

divided into the flowing categories- (1) association / 

이ustering / classification (2) patt이completion (3) 

regrcssion/generalization (4) optimization. Their 

mathematic시 formulations are summarized in Table 1.

2.1.1 Association, Clustering and Classification

In this pai'adigm, input static patterns oi' tempor지 

signals arc to be classified or recognized as shown in 

Figure 3.

(a) (b)
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Figure 3. Classification - 

(a) association : auto-association and hetero-association

(b) unsupervised 이assification

(c) supervised classification

(1) Association : Of s】)eci 시 inleresl arc the two

associiition formulations auto-association and

hetro-association, shown in Figure 3(a). The 

a니h)-ass()ciati()n problem is to retrieve the complete 

pattern, given partial information of the desired pattem. 

The lietr()-ass()ci<ition is to retrieve a corresponding 

pattern in set li, given a pattem in set A. The weights 

in associative networks are often predetermined based 

on a Uebbi<in-typc formulation.

(2) Uiisupcivised Clustering : The synaptic weights of 

the network are trained by an unsupervised learning 

rule, that is, the network adapts the weights and 

verifies the result based ex 이 usiv 시 y on the input 

patlcms.

(3) Supervised Classification : In many classification 

applications, for example, speech i-etdgnotion, the 

ti aininjr data consist of pairs of input/output patterns. 

In this case, it is more advantageous to adopt 

supervised networks sucli as the well-known 

back-propagation network.

2.1.2 Pattern Completions

There arc l wo kinds of pattccn completion problems： 

ten기)or시 and static. Most conventional multilayer nets, 

Boltzmann machines, and Hopfield nets are for static 

pattern com|)letion, whereas Markov models and 

time-delay dynamic networks <irc for temporal uattern 

completion and recognition. The proper use of 

contextual information is key to successful recognition.

2.1.3 Regression and Generalization

Linear or nonlinear regression provides a smooth and 

robust curve fitting to training patterns, as shown in 

Figure 4(a).The objective generation is to yield a 

correct output response to an input stimulus to which it 

has not been trained before.

Figure 4. (a) A regression example

(b) A generalization example

2.1.4 Optimization

Neural nets offer an appealing tool for optimization 

appliciitions, which usually involve finding a global 

minimum of an energy function. A major difficulty 

associated with lhe optimization pr이)lem is the high 

possibility of a solution converging to a local optimum 

instead of lhe global 이)timum.

2.2 Algorithmic Study on Neural Networks

In *)r(lcr to have a systematic approach to the design of 

neural models il is importiuit to clearly identify the 

design criteria and factors. In 이，der to achieve a 

throiiHl' algorithmic study, formal and theoretical 

treatmciils of the neural models will be indispensable.

2.2.1 laxonomy of 시 Network Design

The design of application-driven ncui al networks 

hinges upon the choice of energy function. Many 

training mechanisms tire governed by minimization of 

the energy function. Various application paradigms 

based on such a formulation (ire diplayc*d in Tabic 1.

1'he following design factors could be equ사ly critical in 

cliaraclerizing the neural models.

Supervised and unsupcj'vised models；

Hasis functions and activation functions；

Neural network structures；

Mutual and individu시 training strategies；

Static and temporal patternnn recognitions；

Decision and approximation/optimizcition 

r()rmulali(>ns.

2.2.2 Formal Theory for Neural Mod이s

rheorelical analyses provide an indispensable means to 

affirm the culpability of the netu-al mod 시 s. They 

provide a reliable basis for measuring the performance 

of a model, which cannot be support a variety of neural 

models.

2.3 .Arcliitectiires of Neur시 Networks

Most neural algorithms are computationally intensive 

and iterative in nature. Most a])이ications also demand 
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very high throughput, especially in a real-time 

processing environment. For this, massively paraUel 

processing represents a very natural and desirable 

solution.

Table 1. The training and retreving formulations for 

vaiious application paradigm.

Network 
Type

Application 
Fuxiigmi Formulation

RalnanBI-PhBM 
FonnalaUoa

Supervitcd 
tuining

Givea tu|«t irtnbol
(“)，«ad W.
i.i. y = *i-

Ginn »i. W, datermina 
»jmbal »i.

Apptcudmktion

Ginn >{, twget *alu« 
(t.), Sad W. «.t.

i> miniinum.

Gives ■>, W, 
kk< v«1m of

— ♦(/).

Re(ul»i>ation

Given tG tu|«l vJue 
(li), find W uld ♦, ».t.

AP(♦(■.tv)) u minunum.

Given W, And 
the nlut of 
— 히“W).

Untupervued 
truning

CIuiificBlion
VQ oi cla(tciui(, 

ot compctiliTe l»taing 
techaiqvu.

Given si, detcimui* 
the gtoup to which 

it bcloBgi.

Fixed-
Awociatian

Weight prcdetcimincd 
(Hebbikn rule, «ometixne»)

Given W, ■ , find s, 
Ihc mudmnm

of £(■, W).

Optimisation
Weight predetetmiaed 
vi» the energy function

Given W, find «, 
the *(lob*J* minimum 

of E(x,W).

2.4 Total Infonnation Processing Systems

In order to holistically analyze a total system for neural 

information processing, it is important to clea이 y 

identify the r이e of each of its subsystems. A total 

recognition system involves the mappings between 

several different spaces.

Instantiation Space : During the instantiation process, 

a symbol is instantiated into a physic前 object. The 

instanliation space contains all actual occurrences of 

objects.
,Featmc Space : The object is descrived in temis of 

Il set of pnmitives. The mapping from instantiation 

space to feature space is called feature extraction. 

Moreover, this mapping represents a 

data-compression stage.

Symbol Space : The symb이 space contains the 

symbols representing classes of objects. The 

mapping from feature space to symbol sp규ce is 

called classification.

2.5 Representation and Feature Extraction

Fcalure extraction and representation are indispensable 

to a neural infonnation processing system. The power 

of neural networks lies in the details of representation 

and coding of pattern vectors. It is essential that a 

representation can provide concise, invariant, and/or 

intclligiblc information of the input patterns. They 

dictate the ultimate performance of the system. The 

following are general criteria for measuring the quality 

of a feature representation.

(1) Data compression : to extract vital representations 

or features.

classified into four categories：

(2) Invariance :to reduce the dependency of the

features on imaging conditions.

(3) Fidelity : to best preserve intelligibility of the

feattues.

As shown in Figure 5. ■, the representations can be

Figure 5. Signal represennntations can be classified 

into four group.

Table 2. A possible taxonomy of supervised neural 

models, characterized by the network 

structure, energy function, temporal property, 

training strategy, and neuron/basis function.
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Table 3. The process od several different application 

examples.

OCR TEXTURE 
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RECOGNITION
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Walih coding

Neurd actwotk HMM actwoik DBNN Multilayer pereepkton

3. Taxonomy of Neural Networks

There are also two phases in neural information 

processing. They are the learning phase and the 

retrieving phase.

Retrieving Phase : Various nonlinear systems have 

tx'cn proposed for retrieving desired or stored 

patterns. The results can be either computed in one 

shot or updated iteratively based on the retrieving 

dynamics equations. The final neuron values 

icprcsent the desired output to be retrieved.

Learning Phase : A salient feature of neural 

networks is their learning ability. They learn by 

ad 시)liv 시 y updating the synaptic weights that 

characterize the strength of the connections. The 

weights arc updated according to the information 

extracted from training patterns. Usually, the 

cplhii시 weights are obtained by optimizing certain 

"energy" functions.

Real-world applications may face two very different 

kinds of real-time processing requirements. One 

re(|iiires real-time retreving but off-line training speed.

The other demands both retrieving and training in 

real-time. These two lead to very different processing 

speeds, which in turn affect the 시 gorithm and 

hardware adopted. A possible taxonomy of neural 

networks is displayed in Table 2. The following are 

critical factors for a systematic design of neural 

models： supervised and unsupervised models；basis 

functions and activation functions； structures of neural 

networks； mutual and individual training strategies； 

static and temporal pattern recognitions； and 

decision-based and optimization formulations.

3.1 Supervised and Unsupervised Networks
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As shown Figure 6. .the neural networks are commonly 

categorized in temis of their corresponding training 

algorithms： fixed-weight networks, unsui>ervised 

networks, and supervised networks.

Neural Networks

Fixed
I

Unsupervised
I

Supervised
1

1
• Hamming Nel

1
• Neocogmiro!) • Perceptron

• Hopfield Net • Fcaiure Map • Decision-Based NN

• Citmbinaiorial 
Opiimizaiion

• Compemive Learning • ADALINE(LMS)

• ART • MuJiilayer Percepiron

• Principal Cotnpunenr • Temporal Dynamic Models

• Hidden Markov Model

Eigure 6. Neural networks can be classified into 

fixed-weights networks, unsupervised 

networks, and supervised networks

3,1.1 Supervised Learning R나les

Supem'vised leaining networks have the mainstream of 

neural motlel development. The training data consist of 

many pairs of input/output training patterns. Therefore, 

the learning will benefit from the assistance of the 

tcachei', cf. Figure 7.(a). As an example of supervised 

training, b'igurc 7. shows that the decision boundaries 

arc linear hypen>lancs specified by the synaptic weights 

v\;!j. Given a new training pattern, (ni + l)t!i, the weights 

may be updated as follows：

Figure 8. When a linear basis function is adopted in a 

training process, linear hyperplanes arc adjusted to 

best classify one group from another gro디[)•

Figure 9. In this simulation of a two-layer BP network 

for the XOR problem (a) XOR problem (b) a two-layer 

network (c) The change of weights gradually adjusted 

the cordinates.

Un•11 (ml , 彳 Iml
Wij = Wij + ZJ Wii

Note that the classification performance is 응radu지ly 

improved.

(a) (b)

Figure 7. Schematic diagrams training synaptic weights

(a) supervised learning

(b) unsupervised learning

3.1.2 Unsupcrvised Learning Rules

For an unsupervised learning rule, the training set 

consists of input training patterns only. Therefore, the 

network is trained without benefit of any teacher, as 

shown in Figure 7 (b). Typical examples are the 

Hcbbian learning i*ulc and the competitive learning mle.

3.2 Basis Function and Activation Function

A basic ncui•시 model is illustrated in Figure 2(b). It 

can be chiuiictcrizcd by the functional descriptions of 

the connection network and neuron activation. The net 

value in will then be further transf이w】cd by a nonlinear 

activation function f to yield a new activation value n\- 

I hc fin시 output y can usually be expressed as function 

of lhe input and the weights y=u(x,W).

3.2.1 Basis Function (Net Function)

1'he connection networks are mathematically 

represented by ;i basis function u(w,x), where w stands 

for the weight matrix, and x for the injjut vector. The 

basis function has two common forms (cf. Figure 10. >

1. Linear니)asis function (LBF) is a hype门)lane一type 

function.

Ui(W,X)=饵 WijXj

2. Radial basis function (RBF) is a hypersphere-ty]je 

function.

「乙 *
Ui(\v,x) =J S (Xj-Wij)* 

i = 1

3.2.2 Activation Function (Neuron Function)

4'he net value as expressed by the basis function, 

will he ininicdiately transformed by a nonlinear 

jictivation function of the neuron.

1

Sigmoid function : Jhii)- 此-
1+e

Caussian funclion : /lui) - ce v，
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Figure 10. (a) Linear-basis function (b) Radial-basis 

function

Figure 11. (a) step func. (b) ramp func. (c) sigmoid 

func. (d) Gaussian func.

3.3.3 ACON Versus OCON Approaches

The issue is how many networks should be used for 

multi-category classification. Typically, one output node 

is used to represent one class. Given an input pattern 

in the retreving phase, the winnerti.e., the class that

wins the recognition) is usually the output node that 

has the maximum among all the output values. Two 

plausible network structures are ACON (All-Class 

-One-Network) and OCON(One-Class-One-Network). 

The ACON and OCON differ significantly in size and 

speed, that is the total numbers of synaptic weights 

and the training time. Emprical results confirm that the 

convergence rate of ACON degrades drastically with 

rcpect to the network size because the training is 

influenced by conflicting signals from different 

teachers. Also experimental results based on some 

speech application suggests that 3-5 hidden units are 

all it needs per subnet.

3.3 Structures of Neural networks

The major structure factors are connection structures, 

network size, and ACON(All-Class-One-Network) 

versus OCON(One-Class-Onc-Network) appixiachcs.

3.3.1 Interlayer and Intralayer Connection Structures

As shown Figure 12. a neural network comprises the 

neuron and weight building blocks. There are three 

types of neuron layers： input, hidden, and output layers. 

Two layers of neurons communicate via a weight 

connection network. There are four types of weighted 

connections： feedforward, feedback, lateral, and 

time-delayed connections.

(1) Feedforward Connections

(2) Feedback Connections

(3) Lateral Connections

(4) Time-Delayed Connections

Eiffure 13. (a) The structure for an ACON model 

(b) An OCON structure viewed as a resulttt of 

partitioning a single supemet into many small subnet

Ninpuu

Figure 12. A basic network structure comprises of 

neurons andweights layers.

3.3.2 Size of Neural Networks

The size of neural networks depends on the number of 

layers and the number of hidden-units per layer.

(1) Number of layers : The number of layers is very 

often counted according to the number of weight 

layers(instead of neuron layers)

(2) Number of hidden-units : For the best network 

perfonuance(e.g.generalization), an optimal number 

of hidden-units must be properly detcmiincd.

3.4 Mutual and Individual Training Sti'atrgies

The training strategies may be divided according to the 

presence or absence of cross reference between 

different outputs. In a mutual(individiual) training rule, 

cross-references among the outputs can (cannot) be 

used to assist the training . More precisely , in mutual 

tx-aining, the training of all the weights is influenced 

by all the output values.

3.4.1 Mutual Training Stratrgy

It allows two neighboring categories to "negotiate" their 

mutual decision boundary.This leads to more acute 

boundai-ies.

3.4.2 Individual Training Stratrgy

The training of an individual subnet is strictly trained 

by the outputs of itself. The advantage is its ovious 

simplicity. Individual training Stratrgy may be further 

diviiided according to the training data involved. 

-37 -



옹성인식으 의한 신경히호망 접근과 동향

o Discriminative Training : The strategy uses all the 

training pattern 외both the positive and negative 

examples) to train each subnet.

O Independent Training : Pie alternative is the 

totally independent training in which each subnet is 

trained by its coressponding positive examples only.

3.4.3 Hierarchical Training Strategy

For higher performance the mutual training should be 

used. For simpler and faster training , the individual 

traininiig very attractive.

Figure 14. (a) The subnet are individually trained in 

the first stage (b) The network is mutually trained and 

only thr "critical" subnets will be updated trained

3.5 Static and Temporal Pattern Recognition.

Two types of patterns are recognized : (a) static 

pattern and (b) temporal patterns. Static pattems are 

not odcr-scnsitivc. Temporal patterns have strong order 

sensitivity. Temporal patterns have two networks. One 

is Deterministic temporal networks. The other is 

Stochastic temporal networks.

3.6 Decision and Approximation/Optimization 

Formulations

The formulations of supervised neural networks can be 

divided into desicion-based and optimization-based 

categories.

3.6.1 Decision-Based Formulation

In a decision based neural nctwork(DBNN) , the teacher 

only tells the correctness of the classification for each 

training pattern. The objective of the training is to find 

a set of weights which yields a correct classification. It 

is very important to identify a proper discriminant 

function in order to best distinguish each class in the 

presence of other classes. The selection of such 

discriminant functions varies siginificantly between the 

static and temporal recognition.

3.6.2 Approximation/Optimization Formulation

The most pop나lar function is the minimum-squares 

-eiTor between the teacher and the actual response. 

Obviously, the exact teacher's values have to be 

available as a refemece at the output. However, the 

exact values will not be required if likelihood function 

is used as the training criterion. The key is t。identify 

a proper training criterion to be optimized, which 

depends on the application(s) intended and on whether 

static or temporal patterns are involved.

4, Back-Propagation Networks

Th Back - Propagation(BP) algorithm offers an effective 

approach to the computation of the gradients. This can 

be applied to any optimization formulation (i.e.,any type 

of energy function) as well as the DBNN formulation. 

A linear basis function (LBF) multilayer network is 

chai'acterized by the following dynamic equations：

Mi

U>(1) = S Wjj⑴ Hj나-1) + 0 id)

户1

ai(i) = f(ui(l)) : 1W皿

where the input units aie represented by xi — ai(0), the 

output units yi = ai(D, and the L is the number of 

layers. The activation function is very often a 

sigmoid function : 1

Figure 15. The multiple시ayer network shown is a net 

with thi*ee weight layers.

The BP algofilhm, independently proposed by Werbos, 

Parker, and Humelhart, offers an efficient computational 

speed-up for training multilayer networks. The 

objective is to train the weights wij so as to minimize 

E. The basic gradient-type learning foraiular is

侦⑴=\恥""'⑴+ /旳心⑴

u idi 

concsixinding 

derivation of 

technique-

the mth training nattem, al,lll(0), and its 

teacher t1"1', m= ..... . presented. The

the BP algorithm follows a chain-rule

3 E
J Wijl'"'(l) = - T}

6 "胡⑴

5ai,m)(l)a E
-V

d 시m)(l) 8w"(l)
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where the error signal 3 is defined as 

Figure 17. The network structure for a TDNN phoneme 

recognizer for three phoneme "B", "D", and "G".

Figure 16. The schematic diagram for the back 

propagation process

5. Time Delay Neural Network

It was proposed by Waibel et al. to expand the hidden 

layer by addin흥 inultiple(orthogonal) delay-lines, one 

delay-line for each of the original hidden units. As 

shown in Figure 17. , this leads to a structure with 

2-diniensional delay arrays. Such a network structure 

is called Time-Delay Neural Network(TDNN). The 

TDNN is nonrecurrent and copes with time alignment 

by ex이icitly delaying the signal waveform by a fixed 

time span. The conventional BP(Back Propagation) 

algorithm can be ad이〉led to train the weights. In terms 

of real-world applications, the TDNN suffers from 

several entieal drawbacks. The complexity of the 

stmeture usually requires a time consuming training 

process. The prefixed span of the time-delay-lines 

renders it less suitable for heavily warped (speech) 

signals. Moreover, the TDNN is quite sensitive to 

ambient noise, causing significant jx'rfoi-mance 

degradation when speech signals 시 err noise corrupted. 

The theoretical an시ysis and emprieal remedy pertaining 

to the TDNN structure remain open research subjects.

6. Self-Organized Map (SOM) Algorithm

One of the representative unsupervised learning model 

is SOM(Self Organizing Map) model proposed by 

T.Kohonen. SOM algorithm is a feature classifier 

representing the probability distribution of input pattern 

as topological maps to the two dimensional output layer 

through competitive learning and lateral inhibition. SOM 

learning consists of two processes, the electing a 

similar cell to input pattern and the modifying weight 

vectors of the selected cell. Inner product or Eu이ide그n 

distance measures their similarity. Since all cells 

compete against other cells for being learned, the 

leaming in SOM is called ^competitive learning". The 

best matching vector, a winner , has the chance to be 

learned. In this point the Kohonen network is a 

"winner-take-all fashion”. The leaming algorithm 

adjusts the weight vectors in the vicinity of the 

winning neuron according to learning rules. It is as 

follows；

PMi(t) + (t)[ X(t) - Mi(t) ] if i c Nc(t)
Mi(l+1) = \

Ims if i 丰 Nc(t)

where , X(t) is input pattern, Mi is weight vector, Nc(t) 

is a neighbor cell which can be learned with winner 

cell, a (t) is adaptation gain, 0 < a (t)<l, leaming rate. 

a (t) is decreased monotonically with time. We use the 

lateral inhibition which modifies the weights of 

neighhooor cells as well as that of the winner cell. 

Kohonen1 s 시gorithm creates typological organized map 

of various features of input patterns. It is analogous to 

the basic functions of the biological neuron. The effect 

of lateral inhibilion is similar to that of Maxican hat 

function. The neighborhood sttuls with large number, 

and is gradually decreased with time. Eventually, the 

neighborhood includes only the nearest cells around the 

winner cell.

Figure 18. (a) A network for a self-organizing feature 

map (b) Once such a correlation is established, the size 

of a neighborhood can be decreased gradually, baaased 

onnn the desixe of having a stronger identity of 

individual nodes.

7. Recurrent Neural Network

A major alternative to TDNN is to incorporate delay 

feedbacks into temporal dynamic models, making them
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recunent. This leads to the so-called recuiTent neuial 

network(RNN). For example, a multi-layer network may 

be made recurrent by introducing time-delay loops to 

the input, hidden, and/or output layers. Another way is 

to route delay connections from one layer to another. 

As a result of such a structural change, the gradient 

c 이 npu 너 tion for 나!。 RNNs inv 이 v(、$ a complex 

back-propagation rale through both time and space. A 

very important class of RNNs is represented by 

single-layer reciinent mod 이 s s 나 ch as those shown 

Figure 19 (a). This mod시 serves to reduce 나认' netwoik 

complexity. The state-space representiition again proves 

very useful for RNNs. The states can be either fully or 

interconnected. Some direct connections 

(without d 이 ay) may also be 

shown in Figure 19 (b). In this 

appr(E시】]led by "unfolding" the 

time penocl into <i multi-layer 

conventional back propagation

sparsely

between the neurons 

accommodated. This is 

case, the model can be 

network over a finite 

network. Then the

leasning r니e can be applied with the restrictioii that all 

the unfolded weights must be uniformed.

Ta이c 4. (b) ICASSP in 1995

Type Nation Unit SD/S1D Recognition

LVQ Iran SID
Error rate

2.9%

Hybrid 

(Neural 1'ree 

Network + HMM)

USA

Isolated

Phoneme

Error rate

036%

Isolated

Word

Error rate

0.17%

NP(Neural Prediction)

System
France Phoneme SID 77.4%

RNN

(Recurrent NN)

Single 

Word
95.3%

Hongkong Multi

Word 

(10 digit)

r?%

NTN Digit SID 88.7%

(Neural Tree

Network)

USA
Phoneme 42.9%

FRNN
Gennany

Word SID 97.1%

(Fully Recurrent NN) Digit 98.2%

Figure 19. Two forms for slate-space represejiation of 

a single시ayer ItNN

8. Speech Recognition Trends by Neural Networks and 

Conculsion.

In present, the method using neural networks for 

speech recognition arc MLP(MultiLaycr Perceptron), 

TDNN, RNN, SOFM, Hybrid method with 

HMMtHidden Markov Model), and conventional neural 

network with many variations, we investiagtes the 

neural network method in the ICSLP, ICASSP, and 

1CNN confer-encc journ시 in 1994, ICSLP in 1995 , and 

the jounal of the acoustical society of Korea in 1994. 

They are shown in 1'able 4 (a),(h),(c).

As shown in Table 4, the hybrid melhod(NN+HMM) is 

studying briskly. Also a variety of methods in neural 

networks arc researching parallelly.

Table 4. (a) The jounal of the Acoustical Scx-iety of 

Korea in 1994

_________ Type __
MLP 二：

Frequency State NN ■ 
「瓦畚id*:丽7 

__ TDNN __ : 

j Dynamically Localized

DLSOFM —__ _ 

___ PNN Rediction 

HCNN Hidden Control [

NaUoii 

Korea

Korea

Phoneme

^SD/SID Recognition;
「「二二89成 j

96% I

Algorithm __

9833%

、、；Digil 93%

'1 二二―T\ 94% '

、' 广! "sHy j‘[9.逐％

Table 4. (c) ICSLP, ICNN, and ICASS1* in 1994

Type Nation ! -Unit s57sib Recogniton

TDNN Korea phoneme SD 93.7%广95.2%

Hybrid(HMM+MLP)

PNN(pr(xlictive NN)

…卞厂

니SA

Korea 

以團나】

word

word 

phoneme

SI.)

SID _ 
sii>

error rate

1.7%

95.8%
53-z57%

MLP English worxi 

syllable

SID 11.3%

MSGCNN 

(mulit stale gaussian 

competitive NN)

一 거

China SD 98.52% I

Modular WNN 

(window based NN)
Australia wor너 SD 82.8%

rHybrid(|-lM'M+ANN) USA word SD 96%

SDNN

(state detetatxjr NN)
China phoneme 98.5% j

NN India word 98%

Hybrid(HMM-MLP) USA

telephone 

speech 

word

error rate

9.1%

NTN 

(neural tree net.)
USA

TIMIT

DB

_ NN_ _ _ _

MLP

France

Belgium

phoneme 

word

SD 75.6%

91.2%

Hybrid 

(TDNN+HMM)
Germany phoneme SD

error rate

22.2%

TDNN Singapole syllable SID 95.3%

Hybrid(HMM+NN) Italy word SID 97%

TDNN USA phoneme
multi SP 

single SP

64.6% 

67.08%

DNN(dynamic NN) L_usa phoneme SID 88%

MLP France vowel SD 90-97%

TSRNttime slice 

recurrent NN)
Japan phoneme SD 95.8%

LVQdeaming VQ) Japan wond 99.2%

Fuzzy NN USA vowel 89.6%
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