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Neural Network Approaches and
Trends for Speech Recognition

Soon-Hyoh Kim, Seong-Kwon Lee

Computer Engineering Dept. KwangWoon Univ,

ABSTRACT

We proposed the approach method of neural network
for Signal Processing, especially speech signal
processing and reviewed the algorithms for several
neural networks which are used for many alppication
field in speech processing. Finally, investigated the
trends in neural network method through 3 confernce
jounal and the ASK {AcousticNSociety of Korea) jounal
in 1994.

1. Introduction

Neural network have become & very popular field of
research in cognitive science, neurobiology, computer
engineering/science, signal  processing, aptics, and
physics. They present a very broad range of neurat
processing niodels. An artificial nevral petwork is an
abstract  simulation of a real nervous system that
contains a collection of peuron unils communicating
with each other via axon connections. The first
fundamental modeling of neural nets was proposed in
1943 by McCulloch and Pitts in terms of a
computational  mwdel  of  “nervous  activity”. The
McCulioeh-Pitts neuron is a binary device and each
newron has a fixed threshold, thus performing simple
threshold Jogic. The McCulloch-Pitts mwdel lead the
works  of  John  Neumann, Marvin Minsky, Frank
Rosenhlatt, and many others. Hebb postulated that the
neurons were  appropriately  interconnected by
self-organization and that  "an  existing pathway
strengthens the connections between the neurons”. The
neural models can be divided inta two categories: 1)
The: biclogical type. 20 The application-driven.

1.1 Biological~Type Neural Networks

Tha main ohjective of hiological-Lype neural nets is o
develope a synthetic element for verifing hypolheses
concerning hiclogical systems. A simplified sketch of a
natwral neural network is illustrated in Figure 1. There
are three parts in a neuron : (1) a neuron cell body (2)
branching extensions called dendrites for receiving
input, mul (3} an ason that carries the neuron’s output
the dendntes of  other neurons. The synapse
represents the junction between an axon and a dendrite,
The process of newons is often modeled as a
propagation rule represented by a net value ul - ), cf.

to

Figure 1. A simplified sketch of biclogical neurcons

Figure 2(a). The neuron function can be modeled as a
simple threshold function f{ -}

1.2 Application-Driven Neural Networks

In general, neurons and axons are mathematically
maodeled by activation funclions and net functions(or
hasis function) respectively, cf. [igure 2{(b). The
selection of these functions often depends on the
applications the neural modefs are for. The strength of
application—driven neural networks hinges upon three
main characteristics: 1) Adaptiveness and

self-organization (2} Nomlinear network processing (3)
Parallel processing. These charvacteristics have played
an important role in newral network’s applicahilities (o
signal processing and analysis.

Figure 2. (a) A simplfied neural model wittth lincar net
function and a threshold neuron function.

(b) A general neural model
Net function u( -} Activation function fU-)}

2. Applications, Algerithms and Architectures

In order to have an integrated understanding on neural

neiworks, we  review applications, algorithm and
architecture,
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2.1 Application Paradigms of Neural Models

The application domains of nevral nets can be roughty
divided into the following categories: (1} association /
clustering / classification (2) pattern completion (3}
regression/generalization (4}  optimization.  Their
mathematical formulations are sumunarized in Table 1.

2.1.1 Associalion, Clustering and Classification
In this paradigm, input static patterns or temporal

signals are 10 be classified or recognized as shown in
Figure 3.
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Figure 3. Classification * o
(a) association ! auto—association and hetero-association
(b} unsupervised classification

{c) supervised classification

(1) Association OF special  interest  are the 1wo
assoctation  formulations amto-association  and
hewra-ussociation,  shown  in Figure  3¢a).  The
auto=association problem is (o retricve the complete

pattern, given partial nformation of the desired pattem.
The hetro-association is o retrieve a corvesponding
pattern in set f, given a pattern in set Ao The weights
in associative networks are often predetermined  based
on a Hebbiim-type formulation,

(2) Unsupervised Clustering @ The synaplic weights of
the network are trained by an unsupervised learning

rule, that is. the network adapts the weights  and
verifies  the result  based  cexclusively  on the  inpnt
patiens.,

{3y Supervised Classification In many classification
applications,  (or  example,  specch  recognotion,  the
training data consist of pairs of input/ontput patterns,
In this  c¢ase, it is  more  advantageauss 1o adept
supervised  aetworks  sueh as the well~knawn

back-propagation nelwork.
2.1.2 Pattern Completions

There are two kinds of pattern completion probiems:
temporal and static. Most conventonal multilayer nets,
Boltzmann machines, and Hopfield nets ave for stalic
pattern  ¢ompletion,  whereas  Markoy  madels i
time~delay  dynamic networks are {or temmporal pattern
completion  and  recognition.  The proper  use  of
contextaal information is key (0 successiul rocognition.

2.1.3 Regression and Generalization
Linear or nonlinear regressiun provides a smoath and

robust curve fitting to training patterns, as shown in
Figure  #Ha)The objective generation s to yickl a

correct guilput response Le an input stimulus to which it
has not heen trained hefore.
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(a) A regression example
{b} A generalization example

Figure 4.

2.1.4 Uptimization

Neural nets offer an appealing tool for optimization
applications, which usually involve finding a global
mininum of an energy function. A major difficulty
associaled  with the optmization problem is the high
passibility of a solution converging to a local oplimum:
insteid of the global optimum.

Algorithmic Study on Neornl Networks

En order 1o have o systemalic approach to the design of
models it s important 0 clearly identify the
design criteria and  facuws. In order to achieve a
throngh  algorithmic  stwdy,  formal  and  theoretical
treatments of the neural maodels will he indispensable.

neural

2.2.1 Taxonomy of Newral Network Design

ncural
(unction.

The design of  application-driven nctworks
hinges  upon  the of energy Many
raining mechanisis are governed by minimization of
(he  energs Yavions application  paradigms
based on such & formulation are diplayed in Table 1.

choice

[unction.

The following design factors could be equally criticad in
characterizing the nearal medels,

Supervised and unsupervised models:

sis functions and activation functions:
Newrst network structures:
Mutnal and individual training strategies:

< Statie and temporal patiernnn recognitionst
Decision and approximation/optimization

fornulatinns.
2.2.2 Formal Theory for Keoral Mocdels

Theoretical analyses provide an indispensable means o
affum  the capabidity of the newal models. They
provide o rebabte basis for measuring the performance
ol i model, which cannot be support a vaviety of neural
models,

2.3 Architectives of Newral Networks

Most aeneal  algorithms  are  computationally  intensive
al iterative in nature, Most applications also demand



very high throughput, especially in a real-time
processing environment. For this, massively paraliel
processing Tepresents a  very natural and desirable
solution,
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TFable 1. The training and retreving formulations for
various application paradigm.

2.4 Totab Information Processing Systems

In order o holisticalty analyze a total system for neural
information processing, it is important to clearly
identify the role of each of its subsystems. A total
recognition system involves the mappings between
severnl different spaces.

Instantiation Space @ During the instantiation process,
a symbol is instantiated into a physical ohject. The
instantiation space contains all actual occurrences of
objects,

. Featire Space @ The object is descrived in terms of
a sel of primitives. The mapping from instantiation
space o feature space is called feature extraction.
Moreover, this mapping represents a

data-campression siage.

Symbol Space The symbol space contains the

symbols representing  classes of objects. The

mapping  from  feature space 10 symbol space s

called classification.

2.5 Representation and Feature Extraction

Feature extraction and represeniation are indispensable

to a newral information processing system. The power

of neural networks lies in the details of representation

anedl coding of pattern vectors. It is essential that a

representation can provide concise, invariant, and/or

intelligibde information of the inpul patierns. They

dictate the oltimate performance of the system. The

following are general criteria for measuring the quality

of a feature representation.

(1) Data compression @ to extract vital representations
or featares.

(2) [Invariance 1w reduce the dependency of the
features on imaging conditions.

(3) Fidelity t to hest preserve intelligibility of the
fealwes.

As shown in  Figure 5., the representations can be

classified inty four categories:
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Figure 5. Signal represennntations can he classified
into four group.
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Table 2. A possible taxonomy of supervised neural
models, characterized by the network
structure, energy function, temporal property,
training strategy, and neuron/basis function.
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Table 3. The process od several dilferent application
examples.

3. Taxonomy of Neural Networks

There  arve also two phases in newral informatien
wrocessing, They are the learning phase and the
retricving phasc,

Retrieving Phase : Various nonlinear systems have
been propused  for  retrieving  desired or stoved
patierns. The resudts can he either computed in one
shot or updated iteratively based on the retrieving
dynamics equations. The final npeuron  values
represent the desired output to be retrievex!.
lLearning Phase t A salient feature of neural
networks is  their dearning ability, They learn by
adaptively  opdating  the synaptic  weights that
characterize the strength of the connections. The
weighls are updated according 10 the infermation
extracted  from  training  pattems.  Usnally, the
optimal weights are obtained by optimizing certain
“eneirgy” functions,

Real-world applications may face two very different
kinds of real-time processing requirements. One
requires real-thme retreving but off-line training speed.

The other demands both retrieving and waining in
real-time. These twoe lead to very different processing
speeds,  which in tumn  affeet  the  algorithm  and
hardware adopted. A possible taxonomy of neural
networks is displayed in Table 2. The following are
critical factors for a systematic design of neural
models:  supervised and unsupervised modelsibasis
functions and activation functions; structures of neural
networkss mutual and individual training  strategies;
static  and  temporal pattem  recognitions; and
decision~based and optimization formulations.

3.1 Supervised and Unsupervised Networks
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As shown Figure 6, ,the neural networks are commonly

categorized in terms of their corresponding  training
algorithms: fixed-weight  networks, unsupervisel
nelworks, and supervised nelworks.
Newral Neiwork s
Fixed Unsupervised Supervived
* Hammang Ney & Necxogitron * Perceparon
# Hopliela Nei * Foatore Map ® Decasmnr-Bated NN
# Combinalonut *Compehlive Leaming & ADALINE { LMS )
Oprichazasion
®ART & Multlayer Fereepiron
# Principal Compunena * Teapw ) Dynamic Models
» Hukken Markos Mol
Figure 6. Neural nelworks can he chassified inw
fixed-weights networks, unsupervised

networks, and supervised networks

41,1 Supervised Leaming Rules

Superrrvised leaming networks have the mainstream of
neural nuxlel development. The training data consist of
many pairs of inpu/output training patterns. Therefore,
the leaming  will benefit from the assistance of the
wacher, of. Figwe T.tal, As an example of sopervised
training, Figure 7. shows that the decision boundaries
are lincar hyperplanes specificd by the synaptic weights
wy Given a new waining pattern, (m+1)th, the weights
may be updated as (ollows:

“'ijI"' "o \\'iilm] N qul.m
Note that the classification performance is gradually
improved,
Teacher
Training
Patterns

Figure 7. Schematic diagrams training synaplic weights
(a) supervised leaming
(b) unsupervised lcarming

3.1.2 Unsupervised Lemming Rules

For an unsupervised leaming rude, the training  set
consists of input training patterns onty. Therefure, the
nelwork is trained without benefit of any teacher, as
shown in Figure T(b). Typical examples are the
Hebbian leaming rule and Lhe competitive leaming cule.

3.2 Basis Functen and Activation Lunction

A basic newral model is illustrated in Figore 2(b). 1t
can be chracterized by the functional descriptions of
the ¢connection network and newron activation. The net
value v will then be further transformed by o nonlincar

activation function { 10 yicld a new activation value a.
The final outpat ¥ can nsually be cxpressed as lunction
of the nput and  the weights y= ¢ (W)

1o

Figure 8. When & lincar basis [unction is adopled in a
(raining  process, lincar hyperplanes ave adjusted w
hest classify one group {rom another group.
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Figure 9. In this simulation of a two-layer BP network
for the XOR problem (a} XOR problem (b) a two-layer
network (¢) The change of weights gradually adjusted
the cordinates,

3.2.1 Basis Function {Net Function)

The connection networks are mathematically
represented by a basis (unction aiw,x), where w stands
(or the weight matrix, #nd N for the input vecwor. The
basis function has two common forms {cf. Figure 10,1}

s function (LBF} is a hyperplane-tyne

1. Lin %
function.

" 9 =
wifw,\) P

2. Rwlial -basis function (RBF) is a hypersphere-type
function,

n
wiw.x} =v! P ox,-wph?

3.2.2 Activation Function (Neuron Function}
The net value as expressed by the basis functien,
ulw g, will be immediately transformed by @ nonlinear
activation (onction of the neuron.

1
Sigowid fun¢ton ) = -
1+e W
s
Gaussian func v fludy = ce vl




Figure 10, (a} Linear-basis function (b) Radial~basis
function

AN

Figure 11. {(a) step func. (b) ramp func. (¢} sigmoid
func. (d} Gaussian func.

3.3 Suuciures of Neurid networks

The major structure factors are connection suructures,
network size, and ACOM(AN-Class-One-Network)
versus OCON(One-Class-One-Network} approaches.

3.3.1 Intettayer and Intralayer Connection Structures

As shown Figure 12, a neural network comprises the
neuron and weight building biocks. There are three
types of neuron layers: input, hidden, and output layers.
Two layers of neurons communicate via a weight
connection network. There are four types of weighted
connections:  feedforward, feedback, lateral, and
time-delayed connections.

(1) Feedforward Connections

(2) Feedback Connections

(3} Lateral Connections

{4) Time-Delayed Connections

Lawvdl

Foesdback Feedforward

W‘j
00000000 -
—_—

N opucs

Figue 12. A basic network structure comprises of
neurons andweights layers.

3.3.2 Size of Neural Networks

The size of neural networks depends on the number of
layers and the number of hidden-units per layer.

: The number of layers is very
number of weight

{1} Number of layers
often counted according to the
layersinstead of neuron layers}

(2) Number of hidden-units : For the best network
performancele.g.generalization), an optimal number
of hidden-units must be properly determined.
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3.3.3 ACON Versus OCON Approaches

The issue is how many networks should be used for
multi-category classification. Typically, one output node
is used 10 represent one class. Given an input pattern
in the retreving phase, the winnerG.e.,, the class that
wins the recogniton) is usually the output node that
has the maximuns among all the output values. Two
plausible network structures are ACON (All-Class
~One-Network} and  OQOCON(Onre-Class-One-Network).
The ACON and OCON differ significantly in size and
speed, that is the wtal numbers of synaptic weights
and the training time. Emprical results confirm that the
convergence rate of ACON degrades drastically with
tepect 1o the network size because the (raining is
influenced by conflicling  signals  from  different
teachers, Also ecxperimental results based on some
speech application suggests that .3-5 hidden units are
all it needs per subnet.

Figure 13. (a) The stucture for an ACON model
(b) An OCON structure viewed as a resulitt of
partitioning a single supernet into many small subnet

3.4 Mutual and Individual Training Statrgies

The training strategies may be divided according o the
presence or absence of cross reference between
different outputs. In a mutual{individival) training rule,
cross-references among the outputs can (cannot) be
used to assist the training . More precisely , in mutual
training, the training of all the weights is influenced
by afl the output values.

3.4.1 Mutual Training Stratrgy

1t allows two neighboring categories to "negotiate” their
mutual decision boundary.This leads to more acute
boundaries.

3.4.2 Individual Training Stratgy

The training of an individual subnet is strictly trained
by the aulpuis of itself. The advantage is its ovious
simplicity. Individual training Stratrgy may be further
diviiided nccording to the training data involved.
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C Discriminative Training : The strategy uses all the
training patterns(both the positive and negative
examples) to wrain each subnet.

O Independent  Training : The alternative is the
tatally independent training in which each subnet is
trained by its coressponding positive examples only.

3.4.3 Hierarchical Training Strategy
For higher performance the mutual trzining should be

used. For simpler and faster training , the individual
traininiig very actractive.
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Figure 14. (a) The subnet are individually trained in
the first stage (b) The network is mutually trained and
only thr “critical” subnets will be updated trained

3.5 Static and Temporal Patlern Recognition.

Two types of patterns are recognized @ (a) stalic
pattern and {(b) temporal patterns. Static patterns are
nat oder-sensitive. Temporal patterns have strong order
sensilivity. Temporal pattecns have two networks. One
is  Deterministic temporal networks. The other is
Stuchastic temporal networks.

3.6 Decision and Approximation/Optimization
“ormulaticns

The formulations of supervised neural networks can be
divided inte desicion~based and optimization-based
calegories.

3.6.1 Decision-Based Formulation

In » decision based neural nctworkiDBNN) | the teacher
only telis the correctness of the classification for each
training pattern. The objective of the waining is to find
a set of weights which yields a correct classification. It
is very important to identify & proper <iscriminant
function in order to best distinguish each class in the
presence -of other classes, The selection of such
discriminant functions varies siginificantly between the
slatic and temporal recognition.

-%-

3.6.2 Approximation/Optimization Farmulation

The mest popular function is the minimum-squares
-error between the teacher and the actual response.
Obviously, the exact teacher's values have to be
available as a refernece at the output. However, the
exact values will not be required if likelihood function
i3 used as the training criterion. The key is to identify
a proper training criterion to be optitnized, which
depends on the appfication(s) intended and on whether
static or tenyxnal patterns are involved,

4, Back-Propagation Networks

Th Back-Propagation(BP) algorithm offers an effective
approach 1o the computalion of the gradients. This can
be applied 10 any optinnzation formulation (l.e.any type
of energy function) as well as the DBNN formulation.
A linear basis fuanction (LBIF) multilayer network is
characterized by the following dynamic equations:
NI‘I
wil) = 20 wyll) at-1) + @)
=1
adl) = fui(l) 1sisN s 1SISE

where the input units are represented by x; = a,{0), the
output units ¥ = aill), and the L is the number of
layers. The sctivation funciion is very often a
sigmoid function : 1
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Outputs
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Yjgure 15. The multiple-layer network shown is a net
with three weight layers.

The BP algorithm, independently propased by Werbos,
Parker, andl Rumelhart, offers an efficient computational
speed-up  for  training  wwullilayer networks. The
objective is to train the weights wij so as to minimize
E. The basic gradiem-type learning formular is

w0 = w M)« Jw™(D

with  the mth  raining  vattern, a'"™(0), and its
corresponding  teacher ("™, m=1,2,...M, presented. The
devivation of the B algorithm fallows a chain-rule
technique:

A\"ulmlu] = -3 23
Fwi™Wm)
) iE a &™)
T T swen
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where the error signal 8:™1) is defined as

dE

5™ = - ——
3 ")

16. The schematic diagram for the back

propagation process

Figure

5. Time Delay Neural Network

It was propoesed by Waibel et al. to expand the hidden
layer hy adding multiplelorthogonal) delay-lines, one
delay-line for each of the original hidden units. As
shown in Figure 17., this leads 1o a structwe with
2-dimensional defay anauys. Such a nelwork structure
55 called Time-Delay Neural Network(TDNN). The
TDNN is non-recurrent and copes wilh time alignment
by exphicitly delaying the signal waveform by a fixed
time span. The conventional BP(Back Propagation)
algorithm can he adopted to train the weights. In terms
of real-world applications, the TDNN suffers from
several critical <rawbacks. The complexity of the
stmcture nsnally requires a time consuming training
process. The prefixed span of the time-delay-lines
rerlers it less suitable for heavily warped (speech)
signals. Morcover, the TBDNN is quite sensitive (o
ambient  noise, causing  significant  performance
degradation when specch signals aver noise conupted.
Fhe theoretical analysis and ¢mprical remedy pertaining
o the TDNN strocture remain open research subjects,

: |-

Delayed Input Segment --= = Weight

M2 8 YN F UeMT NP ERTYSGS-12Y 12)

Figure 17. The network structure for a8 TDNN phoneme
recognizer for three phoneme “B”, *D”, and "G".

6. Self-Organized Map (SOM) Algorithm

One of the representative unsupervised learning model
is SOM(Self Organizing Map) model proposed by
T.Kohonen. SOM  algorithm is a feature classifier
representing the probahility distcibution of input pattern
as topological maps to the two dimensional output layer
through competitive learning and lateral inhibition. SOM
leaning consists of two processes, the selecting a
similar cell to input patiern and the wmodifying weight
vevtors of the selected cetd. Inner product or Euclidean
distance measures their similarity. Since all cells
compete against other cells for being leamed, the
leaming in SOM is called "competitive learning”. The
best matching vector, a winner , has the chance to be

learned. In this point the Kohonen network is a
"winner-take-all fashion“. The learning algorithm
adjusts  the weight vectors in the vicinity of the

winning nevron according (0 learning rules. It is as
followss

M) + ([ Xt - Mi(t) ) if i C Ne(®)
AL+ 1) = [

Mi(t) it i ¢ NAB)
where , X(t) is input patterm, M; is weight vector, Ne(t)
is a ncighbor cefl which can be learned with winner
cell. « (1) is adaptation gain, 0 <a(t)<1, learning rate.
a () is decreased monotonically with time, We use the
lateral inhibition which modifies the weights of
neighbooor cells as well as that of the winner cell.
Kohonen's algorithm creates tapological organized map
of various features of imput palierns, It is analogous to
the basic funclions of the biolugical neuron. The effect
of Lieral inhibition is similar to that of Maxican hat
function. The neighborhood starts with large number,
and is gradually decrcased with time. Eventually, the
neighborhadl includes only the nearest cells around the
winner celt.
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Figure 18. {a) A network for a self-organizing feature
map (b) Once such a correlation is established, the size
of a neighborhood ¢an be decreased gradually. baaased
onnn the desive of having a stonger identity of
individual nodes.

7. Recurrent Neural Network

A major altemative to TDNN is to incorporate delay
feedbacks into temporal dynamic models, making them
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recurrent. This leads 1w the so-called recurrent newral
network(RNN). For example, a multi-laver network may
be made recurrent by introducing time-delay loops to
the input, hidden, and/or culpant layers. Another way is
to route delay connections from one layer (o another.
As a result of such a structural change, (he gradicot

computation  for the RNNs involves a  comples

back-propagation rule through hoth timw and space. A
very importani class of RNNs is represented by
single-layer recmrent mdels such as  those  shoewn

Figure 19 (a). This model serves (o reduce the network
compleaity. The state-space representaton again proves

very useful for RNNs, The states can he either fully or

sparsely  inlerconnected. Some  dinect connections
between  the ncurons  (without  delay) may  alse  be
accommdated. This is shown in Figure 19 (h). o this

case, the moded can be approsiamited by
network over a finite time perod ino o multi-layer
network.  Then  the  conventional  back -propagation
leasning rule can be applied with the resudction that ald
the unfolded weights pnst be uniformed.

“unfolding” the

autput

output

OC0000Q0

initial input

mitial nput

(a) thi
Figwe 19. Two forms for swle-spuce reprosenation of
a single-layer NN

8. Speech Recognition Trends hy Neural Netwarks and
Conculsion.

In present, the method using newrat for
speech  recognition are  MLP(MultiLayer  Perceptronk,
TDNN, RNN, SOFM, Hybrid method  with
HMM(Hidden Markov Model), and conventional neural
network with many varations. we  investiages the
neural network method in the ICSLP, ICASSP, and
ICNN confer-ence journal in 1994, ICSLI? in 1995 . and
the jounal of the acoustical sociely of Korca in 1904,
They ave shawn in Table 4 (a){h),(c).

ne{warks

As shown in Table 4, the hybrid methodINN+HMM} is
studying briskly. Also a varicty of methads in neural
networks are rescarching pavallelly.

Table 4. () The jounal of the Acoustical Society of

Korea in 1994

Nation Unit

_|. Korea | Word

: Type

Kores Phonemt_‘J

iDynamically 1.acaliz

DLSOFM

_40-

Table 4. (b) ICASSP in 1995

“iype “Nation |__Unit_ | SD/SID nition |

o Aype &
: LvQ ran SID “;“;;‘“

Hybrid l]]:';h‘e" E‘;";sm”"
(Neural Tree USA [heieme s

Network + HMM) solated TTor Tate

i e v — Word . 017%
.ural PredicGo
.\NP(NcuEaI ction) France |Phoneme| SID T74% !
Voo Systemo vy T A _
: | Single ;
| NN Word | ‘
! ulu .
| . Hongkeng M
: {Recurrent NN) l 7%
Feee oo e e 1o dlE__U ~
; NTN Digit | SID. 83.7%
! {Neural Tree AR, : i
. _Network) _ __I._
FRNN {
1

({Fully Recwrrent NN) |

s
ML linghsh § _word | 113% |
! MEGCNN !
tmulit state gaussian| China . sylable SD 9R52%
|._competitive NN} _ | e
Modular WNN
Australi S B
| Cwindow based Npp ;A _W"“’ i B
JUsA | 9% .
China %e5% |
1 India |~ word L %
; | telephone
. . error rate
Hybrid(HMM-MLP) 1 USA speech 01%
. word '
[ NTN b TIMIT
us B
{neural gee pet.) A | oB
... NN France [ phoneme SD 76.6%
MLP Belgium |  word 91.2% ]
Hybrid . N error rate |
 (TDNN+HMM) (rermany | phoneme 5P | 229
TDNN Singapole| syllable SID 95.3%
HybridtHMM+NN) ltaly word SID 97%
TDNN usa pho! multi SP 646%
o TR |single SP|  67.08%
+ _DNN(dynamic NN) USA _ | phoneme SID 88%
MLP ' France | vowel | SD $0-97%
TSRNttime slice s )
| cocusrent NN) Tapim. . phoneme SD__ 96.8_9;&_;
LVQ(learning VO) ” i D% |
. Fuzzy NN [ USA | vowel | 896%

REFERENCE

L S.¥.KUNG “Digital Neurat Network  ppl-39. 1993

MUY Press 1988, pp 2,76
3. S.Katagivi. Culilee,
multi-layver

proceding 1991, pp 127,

and 1.1,
feed-forw

JA Andevson "Nesrocomputing - Paper  collection”

Jung  "Deterministic

ard networks” NNSP,



4. T.Ash "Dynamic node creation in back-propagation
networks” Connection Science 1989. pl1B3.

5. P.Baldi and K.Homik. "Neural netwoyks for principal
component analysis: learning from examples without
local minima” 1989, NN

6. H.Bourland and C.). Wellelkens “"Muliilayer
perceptron  and  antomatic  speech  recognition”
ICNN, 1987, p266

7. P.C. Chang and B.H.Jung "Discriminative template
training for  dynamic programming speech
recognition® IEEE Trans, SP pl83

8. J).Connor, L.E.Atlas, and D.R. Martin. "Recurrent
networks and NARMA modeling” Advances in
NIPS.p301-308, 1992

9. G.cybenko. "Approximation by superpositions of a
sigmoidal function” Math of controlsignal, and
systems,1989. pl69

10. J.L Flanagan. "Computers that tatk and listen :
Man-machine comsmunication by voice” Proceedings
IEEE 1976, p21

11. KS8.Fu “Syntactical Pattern Recognition and
Applications” Prentic Hall, 1982, p24.

12. K. Fukushima. “Cognitron: A sell-organizing
multilayered neural network™ Biological Cybemnetics
1975, p73,91

13. J.Hertz, A. Krogh, and R.G. Palmer "Introduction to
the theory of Neural Computation”™ Addison
Wesley, 1991, p317

14, W.Huang and R.Lippmann “Comparison between
neural  network and  conventional  classifiers”
ICNN, 1987, pp242,258

15. T.Kohonen "Self-Organized foramtion of
topologically comrect featurc map”  Biolagical
Cybernatics, 1982, pp 74, 85

16. Y.H.Pac "Adaptive Pattemn Recognition and Neural
Network” Addison Wesley,1989, p?9

17. ).S. Taur and S.Y.Kung "Prediction-based networks
with ecg application” ICNN 1993, p225

18. K.Diamantaras and S.Y.Kung "An unsupervised
neural model for oriented principal component
extraction” ICASSP, 1991, 0303

19. A.Waibel, T.Hanazawa, G.Hinton,K.Shikano, and
K.Lang “Phoneme recognition using time-delay
neural networks” ICASSP, 1989, p217

20. RE. Kalman "A new approach to linear filtering
and prediction problems” Jounal of Basic
Enginnering, 1960, p233

21. ABarr and K. Feigenbaum “The handbook of
Artificial Intelligence” Kaufmann. 1981, p259

..4]_

M2 2 AT Y UARME 4 = BN(™M SCAS-127 1R)



