• 제목/요약/키워드: neural precursor cell

검색결과 27건 처리시간 0.031초

Derivation of Neural Precursor Cells from Human Embryonic Stem Cells

  • Kim Sehee;Hong Ji Young;Joo So Yeon;Kim Jae Hwan;Moon Shin Yong;Yoon Hyun Soo;Kim Doo Han;Chung Hyung Min;Choi Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • 제28권4호
    • /
    • pp.247-252
    • /
    • 2004
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo. Human ES cells have the capacity to differentiate into various types of cells in the body. Human ES cells are indefinite source of cells for cell therapy in various degenerative disorders including neuronal disorders. Directed differentiation of human ES cells is a prerequisite for their clinical application. The objective of this study is to develop the culture condition for the derivation of neural precursor cells from human ES cells. Neural precursor cells were derived from human ES cells in a stepwise culture condition. Neural precursor cells in the form of neural rosette structures developed into neurospheres when cultured in suspension. Suspension culture of neurospheres has been maintained over 4 months. Expressions of nestin, soxl, sox2, pax3 and pax6 transcripts were upregulated during differentiation into neural precursor cells by RT-PCR analysis. In contrast, expression of oct4 was dramatically downregulated in neural precursor cells. Immunocytochemical analyses of neural precursor cells demonstrated expression of nestin and SOX1. When induced to differentiate on an adhesive substrate, neuro-spheres were able to differentiate into three lineages of neural systems, including neurons, astrocytes and oligo-dendrocytes. Transcripts of sox1 and pax6 were downregulated during differentiation of neural precursor cells into neurons. In contrast, expression of map2ab was elevated in the differentiated cells, relative to those in neural precursor cells. Neurons derived from neural precursor cells expressed NCAM, Tuj1, MAP2ab, NeuN and NF200 in immunocytochemical analyses. Presence of astrocytes was confirmed by expression of GFAP immuno-cytochemically. Oligodendrocytes were also observed by positive immuno-reactivities against oligodendrocyte marker O1. Results of this study demonstrate that a stepwise culture condition is developed for the derivation of neural precursor cells from human ES cells.

In Vitro Expansion of Homogeneous Neural Precursor Cells Derived from Human Embryonic Stem Cells

  • Na, Deuk-Chae;Kim, Se-Hee;Choi, Won-Ik;Hwang, Hyun-Jin;Han, In-Bo;Kim, Jae-Hwan;Park, Keun-Hong;Chung, Hyung-Min;Choi, Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.267-272
    • /
    • 2007
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III ${\beta}$-tubulin and MAP2ab were observed Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.

Differential Expression of TPX2 upon Differentiation of Human Embryonic Stem Cells

  • Noh, Hye-Min;Choi, Seong-Jun;Kim, Se-Hee;Kim, Kye-Seong;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.221-226
    • /
    • 2007
  • Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.

Modification of Pluripotency and Neural Crest-Related Genes' expression in Murine Skin-Derived Precursor Cells by Leukemia Inhibitory Factor (LIF)

  • 박상규
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.175-180
    • /
    • 2012
  • Skin-derived precursor cells (SKPs) are multipotent, sphere-forming and embryonic neural crest-related precursor cells that can be isolated from dermis. It is known that the properties of porcine SKPs can be enhanced by leukemia inhibitory factor (LIF) which is an essential factor for the generation of embryonic stem cells in mice. In our present study, to enhance or maintain the properties of murine SKPs, LIF was added to the culture medium. SKPs were treated with 1,000 IU LIF for 72 hours after passage 3. Quantitative real time RT-PCR was then performed to quantify the expression of the pluripotent stem cell specific genes Oct4, Nanog, Klf4 and c-Myc, and the neural crest specific genes Snai2 and Ngfr. The results show that the expression of Oct4 is increased in murine SKPs by LIF treatment whereas the level of Ngfr is decreased under these conditions. Interestingly, LIF treatment reduced Nanog expression which is also important for cell proliferation in adult stem cells and for osteogenic induction in mesenchymal stem cells. These findings implicate LIF in the maintenance of stemness in SKPs through the suppression of lineage differentiation and in part through the control of cell proliferation.

인간 배아줄기세포 유래 신경전구세포의 특성 분석 (Human Embryonic Stem Cell-derived Neuroectodermal Spheres Revealing Neural Precursor Cell Properties)

  • 한효원;김장환;강만종;문성주;강용국;구덕본;조이숙
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권1호
    • /
    • pp.87-95
    • /
    • 2008
  • 만능성 인간 배아줄기세포로부터 확립된 신경줄기세포 또는 신경전구세포는 퇴행성 신경질환 세포치료제로 이용될 수 있는 다양한 종류의 신경세포로 분화 유도될 수 있다. 하지만, 인간 배아줄기세포로부터 신경세포를 생산하기 위한 기술은 아직 많은 장애를 가지고 있다. 인간 배아줄기세포 유래 신경전구세포에서 특징적으로 나타나는 신경관 유사로제트에 대한 이해는 인간 배아줄기세포 신경 분화의 효율을 높이는데 유용한 정보를 제공할 것으로 사료된다. 일반적으로 신경로제트(neural rosette)는 분화 중인 배아체를 부착 배양함으로써 유도하지만, 이 방법은 시간이 걸리고 복잡하다는 단점이 있다. 본 연구에서는 신경로제트가 부착배양을 하지 않고 부유배양으로 형성될 수 있는지 조사하였다. 우선적으로, 배아체 형성 및 신경분화에 인간 배아줄기세포 클럼프(clump) 크기가 영향을 주는지를 조사하였고, 사방 $500\;{\mu}m$ 크기의 인간 배아줄기세포 클럼프가 신경 분화 유도에 가장 효과적임을 확인하였다. 로제트 형성을 유도하기 위해, 사방 $500\;{\mu}m$ 크기의 인간 배아줄기세포 클럼프를 1주일 동안 EB 배양배지에 부유 배양함으로써 균일한 크기의 배아체를 얻은 후, NES 배양 배지에서 부가적으로 $1{\sim}2$주 동안 계속 부유 배양한 결과, $7{\sim}10$일 사이에 신경관 유사 로제트가 형성됨을 확인하였다. 로제트 형성 세포의 신경전구세포로서 특성은 RT-PCR과 면역형광염색법을 이용한 신경전구세포 특이적 마커(vimentivi, nestin, MSI1, MSI2, Sox1, Tuj1) 발현을 통해 확인하였다. 또한, 성장인자를 제외한 NES 배양 배지에서 신경로제트를 $2{\sim}6$주 동안 지속적으로 배양하면 성숙 신경세포로의 말단 분화가 유도됨을 확인하였다. 신경세포 특이적 마커(Tuj1, MAP2, GABA)와 신경아교 특이적 마커($S100{\beta}$, GFAP)는 $2{\sim}3$주 또는 4주 후에 각각 발현이 유도됨을 확인하였고, 희소 돌기아교 특이적 마커(O1과 CNPase)는 $5{\sim}6$주 후에 발현이 증가함을 확인하였다. 본 연구결과는 신경로제트가 부유 배양시스템에서 성공적으로 형성됨을 보여주고 있으며, 이는 인간 배아줄기세포의 신경 분화를 이해하고, 신경전구세포 유도 과정을 단순화하는데 효과적으로 이용될 수 있을 것으로 사료된다.

  • PDF

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

  • Han, Youngmin;Kim, Kyoung-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권5호
    • /
    • pp.437-441
    • /
    • 2016
  • Objective : Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods : NPSCs ($2{\times}10^4$) were suspended in $100{\mu}L$ of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results : The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion : SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in vivo. NGF may be a useful option for treatment of SCI patients pending further studies to verify the clinical applicability.

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung;Joo, Yu-Young;Hong, Bo-Hyun;Ha, Sung-Ji;Woo, Ran-Sook;Lee, Sang-Hyung;Suh, Yoo-Hun;Kim, Hye-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.229-233
    • /
    • 2010
  • Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.

Neuroprotective Effects of Berberine in Neurodegeneration Model Rats Induced by Ibotenic Acid

  • Lim, Jung-Su;Kim, Hyo-Sup;Choi, Yoon-Seok;Kwon, Hyock-Man;Shin, Ki-Soon;Joung, In-Sil;Shin, Mi-Jung;Kim, Yun-Hee
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.203-209
    • /
    • 2008
  • Berberine, an isoquinoline alkaloid found in Coptidis Rhizoma(goldenthread) extract, has multiple pharmacological effects such as anti-inflammatory, antimicrobial and anti-ischemic effects. In the present study, we examined the effects of berberine on neuronal survival and differentiation in a hippocampal precursor cell line and in the memory deficient rat model. Berberine increased in a dose dependent manner the survival of hippocampal precursor cells as well as differentiated cells. In addition, berberine promoted neuronal differentiation of hippocampal precursor cells. In the memory deficient rat model induced by stereotaxic injection of ibotenic acid into entorhinal cortex(Ibo model), hippocampal cells were increased about 2.7 fold in the pyramidal layer of CA1 region and about 2 fold in the dentate gyrus by administration of berberine after 2 weeks of ibotenic acid injection. Furthermore, neuronal cells immunoreactive to calbindin were increased in the hippocampus and entorhinal cortex area by administration of berberine. Taken together, these results suggest that berberine has neuroprotective effect in the Ibo model rat brain by promoting the neuronal survival and differentiation.