The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.4
/
pp.217-228
/
2022
Currently, there are increasing demands for applying deep neural networks (DNNs) in the embedded domain such as classification and object detection. The DNN processing in embedded domain often requires custom hardware such as NPU for acceleration due to the constraints in power, performance, and area. Processing DNN models requires a large amount of data, and its seamless transfer to NPU is crucial for performance. In this paper, we developed a cycle-accurate NPU simulator to evaluate diverse NPU microarchitectures. In addition, we propose a novel technique for reducing the number of memory accesses when processing convolutional layers in convolutional neural networks (CNNs) on the NPU. The main idea is to reuse data with memory interleaving, which recycles the overlapping data between previous and current input windows. Data memory interleaving makes it possible to quickly read consecutive data in unaligned locations. We implemented the proposed technique to the cycle-accurate NPU simulator and measured the performance with LeNet-5, VGGNet-16, and ResNet-50. The experiment shows up to 2.08x speedup in processing one convolutional layer, compared to the baseline.
Journal of Korean Institute of Industrial Engineers
/
v.27
no.3
/
pp.305-314
/
2001
In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.
International Journal of Control, Automation, and Systems
/
v.2
no.1
/
pp.92-99
/
2004
In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.
Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
ETRI Journal
/
v.41
no.6
/
pp.760-770
/
2019
Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.
Journal of Advanced Marine Engineering and Technology
/
v.28
no.1
/
pp.90-97
/
2004
DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.
Patient revisit to used hospital is a key factor in determining a health care organization's competitive advantage and survival. This article examines the relationship between customer's satisfaction and his/her revisit associated with three different methods which are the Chi Square Automatic Interaction Detection(CHAID) for segmenting the outpatient group, logistic regression and neural networks for addressing the outpatient's revisit. The main findings indicate that the important factors on outpatient's revisit are physician's kindness, nurse's skill, overall level of satisfaction, hospital reputation, recommendation, level of diagnoses and outpatient's age. Among these ones, physician's kindness is the most important factor as guidelines for decision of their revisit. The decision maker of hospital should select the strategy containing the variable amount of the level of revisit and size of outpatient's group under the constraint on the hospital's time, budget and manpower given. Finally, this study shows that neural networks, as non-parametric technique, appear to more correctly predict revisit than does logistic regression as a parametric estimation technique.
This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.
Two identical tall building models with square cross-sections are experimentally studied in a wind tunnel with high-frequency-force-balance (HFFB) technique to investigate the interference effects on wind loads and dynamic responses of the interfered building. Another wind tunnel test, in which the interfered model is an aeroelastic one, is also carried out to further study the interference effects. The results from the two kinds of tests are compared with each other. Then the influences of turbulence in oncoming wind on dynamic interference factors are analyzed. At last the artificial neural networks method is used to deal with the experimental data and the along-wind and across-wind dynamic interference factor $IF_{dx}$ & $IF_{dy}$ contour maps are obtained, which could be used as references for wind load codes of buildings.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.14
no.3
/
pp.241-245
/
2001
In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.