• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.037 seconds

Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network (컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가)

  • Song, Ho-Jun;Lee, Eun-Byeol;Jo, Heung-Joon;Park, Se-Young;Kim, So-Young;Kim, Hyeon-Jeong;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2020
  • The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2×2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images.

Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Jeong-Gyun;Kang, Ye-Seong;Jun, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Song, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.611-624
    • /
    • 2018
  • The percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and NIR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values($R^2=0.743$, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA).

Landslide Susceptibility Mapping by Comparing GIS-based Spatial Models in the Java, Indonesia (GIS 기반 공간예측모델 비교를 통한 인도네시아 자바지역 산사태 취약지도 제작)

  • Kim, Mi-Kyeong;Kim, Sangpil;Nho, Hyunju;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.927-940
    • /
    • 2017
  • Landslide has been a major disaster in Indonesia, and recent climate change and indiscriminate urban development around the mountains have increased landslide risks. Java Island, Indonesia, where more than half of Indonesia's population lives, is experiencing a great deal of damage due to frequent landslides. However, even in such a dangerous situation, the number of inhabitants residing in the landslide-prone area increases year by year, and it is necessary to develop a technique for analyzing landslide-hazardous and vulnerable areas. In this regard, this study aims to evaluate landslide susceptibility of Java, an island of Indonesia, by using GIS-based spatial prediction models. We constructed the geospatial database such as landslide locations, topography, hydrology, soil type, and land cover over the study area and created spatial prediction models by applying Weight of Evidence (WoE), decision trees algorithm and artificial neural network. The three models showed prediction accuracy of 66.95%, 67.04%, and 69.67%, respectively. The results of the study are expected to be useful for prevention of landslide damage for the future and landslide disaster management policies in Indonesia.

Estimation of DNN-based Soil Moisture at Mountainous Regions (DNN 회귀모형을 이용한 산악 지형 토양수분 산정)

  • Chun, Beomseok;Lee, Taehwa;Kim, Sangwoo;Kim, Jonggun;Jang, Keunchang;Chun, Junghwa;Jang, Won Seok;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.93-103
    • /
    • 2020
  • In this study, we estimated soil moisture values using the Deep Neural Network(DNN) scheme at the mountainous regions. In order to test the sensitive analysis of DNN scheme, we collected the measured(at the soil depths of 10 cm and 30 cm) soil moisture and DNN input(weather and land surface) data at the Pyeongchang-gun(relatively flat) and Geochang-gun(steep slope) sites. Our findings indicated that the soil moisture estimates were sensitive to the weather variables(5 days-averaged rainfall, 5 days precedent rainfall, accumlated rainfall) and DEM. These findings showed that the DEM and weather variables play the key role in the processes of soil water flow at the mountainous regions. We estimated the soil moisture values at the soil depths of 10 cm and 30 cm using DNN at two study sites under different climate-landsurface conditions. The estimated soil moisture(R: 0.890 and RMSE: 0.041) values at the soil depth of 10 cm were comparable with the measured data in Pyeongchang-gun site while the soil moisture estimates(R: 0.843 and RMSE: 0.048) at the soil depth of 30 cm were relatively biased. The DNN-based soil moisture values(R: 0.997/0.995 and RMSE: 0.014/0.006) at the soil depth of 10 cm/30 cm matched well with the measured data in Geochang-gun site. Although uncertainties exist in the results, our findings indicated that the DNN-based soil moisture estimation scheme demonstrated the good performance in estimating soil moisture values using weather and land surface information at the monitoring sites. Our proposed scheme can be useful for efficient land surface management in various areas such as agriculture, forest hydrology, etc.

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.

The Efficacy of Biofeedback in Reducing Cybersickness in Virtual Navigation (생체신호 피드백을 적용한 가상 주행환경에서 사이버멀미 감소 효과)

  • 김영윤;김은남;정찬용;고희동;김현택
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.29-34
    • /
    • 2002
  • Our previous studies investigated that narrow field of view (FOV : 50˚) and slow navigation speed decreased the frequency of occurrence and severity of cybersickness during immersion in the virtual reality (VR). It would cause a significant reduction of cybersickness if it were provided cybersickness alleviating virtual environment (CAVE) using biofeedback method whenever subject underwent physiological agitation. For verifying the hypothesis, we constructed a real-time cybersickness detection and feedback system with artificial neural network whose inputs are electrophysiological parameters of blood pulse volume, skin conductance, eye blink, skin temperature, heart period, and EEG. The system temporary provided narrow FOV and decreased speed of navigation as feedback outputs whenever physiological measures signal the occurrence of cybersickness. We examined the frequency and severity of cybersickness from simulator sickness questionnaires and self-report in 36 subjects. All subjects experienced VR two times in CAVE and non-CAVE condition at one-month intervals. The frequency and severity of cybersickness were significantly reduced in CAVE than non-CAVE condition. Virtual environment of narrow FOV and slow navigation provided by electrophysiological features based artificial neural network caused a significant reduction of cybersickness symptoms. These results showed that efficiency of a cybersickness detection system we developed was relatively high and subjects expressed more comfortable in the virtual navigation environment.

  • PDF

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Development of Prediction Model for Prevalence of Metabolic Syndrome Using Data Mining: Korea National Health and Nutrition Examination Study (국민건강영양조사를 활용한 대사증후군 유병 예측모형 개발을 위한 융복합 연구: 데이터마이닝을 활용하여)

  • Kim, Han-Kyoul;Choi, Keun-Ho;Lim, Sung-Won;Rhee, Hyun-Sill
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.325-332
    • /
    • 2016
  • The purpose of this study is to investigate the attributes influencing the prevalence of metabolic syndrome and develop the prediction model for metabolic syndrome over 40-aged people from Korea Health and Nutrition Examination Study 2012. The researcher chose the attributes for prediction model through literature review. Also, we used the decision tree, logistic regression, artificial neural network of data mining algorithm through Weka 3.6. As results, social economic status factors of input attributes were ranked higher than health-related factors. Additionally, prediction model using decision tree algorithm showed finally the highest accuracy. This study suggests that, first of all, prevention and management of metabolic syndrome will be approached by aspect of social economic status and health-related factors. Also, decision tree algorithms known from other research are useful in the field of public health due to their usefulness of interpretation.

The Optimization of Hybrid BCI Systems based on Blind Source Separation in Single Channel (단일 채널에서 블라인드 음원분리를 통한 하이브리드 BCI시스템 최적화)

  • Yang, Da-Lin;Nguyen, Trung-Hau;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In the current study, we proposed an optimized brain-computer interface (BCI) which employed blind source separation (BBS) approach to remove noises. Thus motor imagery (MI) signal and steady state visual evoked potential (SSVEP) signal were easily to be detected due to enhancement in signal-to-noise ratio (SNR). Moreover, a combination between MI and SSVEP which is typically can increase the number of commands being generated in the current BCI. To reduce the computational time as well as to bring the BCI closer to real-world applications, the current system utilizes a single-channel EEG signal. In addition, a convolutional neural network (CNN) was used as the multi-class classification model. We evaluated the performance in term of accuracy between a non-BBS+BCI and BBS+BCI. Results show that the accuracy of the BBS+BCI is achieved $16.15{\pm}5.12%$ higher than that in the non-BBS+BCI by using BBS than non-used on. Overall, the proposed BCI system demonstrate a feasibility to be applied for multi-dimensional control applications with a comparable accuracy.