• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.04 seconds

Spatio-Temporal Incidence Modeling and Prediction of the Vector-Borne Disease Using an Ecological Model and Deep Neural Network for Climate Change Adaption (기후 변화 적응을 위한 벡터매개질병의 생태 모델 및 심층 인공 신경망 기반 공간-시간적 발병 모델링 및 예측)

  • Kim, SangYoun;Nam, KiJeon;Heo, SungKu;Lee, SunJung;Choi, JiHun;Park, JunKyu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This study was carried out to analyze spatial and temporal incidence characteristics of scrub typhus and predict the future incidence of scrub typhus since the incidences of scrub typhus have been rapidly increased among vector-borne diseases. A maximum entropy (MaxEnt) ecological model was implemented to predict spatial distribution and incidence rate of scrub typhus using spatial data sets on environmental and social variables. Additionally, relationships between the incidence of scrub typhus and critical spatial data were analyzed. Elevation and temperature were analyzed as dominant spatial factors which influenced the growth environment of Leptotrombidium scutellare (L. scutellare) which is the primary vector of scrub typhus. A temporal number of diseases by scrub typhus was predicted by a deep neural network (DNN). The model considered the time-lagged effect of scrub typhus. The DNN-based prediction model showed that temperature, precipitation, and humidity in summer had significant influence factors on the activity of L. scutellare and the number of diseases at fall. Moreover, the DNN-based prediction model had superior performance compared to a conventional statistical prediction model. Finally, the spatial and temporal models were used under climate change scenario. The future characteristics of scrub typhus showed that the maximum incidence rate would increase by 8%, areas of the high potential of incidence rate would increase by 9%, and disease occurrence duration would expand by 2 months. The results would contribute to the disease management and prediction for the health of residents in terms of public health.

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

Research about feature selection that use heuristic function (휴리스틱 함수를 이용한 feature selection에 관한 연구)

  • Hong, Seok-Mi;Jung, Kyung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.281-286
    • /
    • 2003
  • A large number of features are collected for problem solving in real life, but to utilize ail the features collected would be difficult. It is not so easy to collect of correct data about all features. In case it takes advantage of all collected data to learn, complicated learning model is created and good performance result can't get. Also exist interrelationships or hierarchical relations among the features. We can reduce feature's number analyzing relation among the features using heuristic knowledge or statistical method. Heuristic technique refers to learning through repetitive trial and errors and experience. Experts can approach to relevant problem domain through opinion collection process by experience. These properties can be utilized to reduce the number of feature used in learning. Experts generate a new feature (highly abstract) using raw data. This paper describes machine learning model that reduce the number of features used in learning using heuristic function and use abstracted feature by neural network's input value. We have applied this model to the win/lose prediction in pro-baseball games. The result shows the model mixing two techniques not only reduces the complexity of the neural network model but also significantly improves the classification accuracy than when neural network and heuristic model are used separately.

Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea (딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로)

  • Lee, Yeonsu;Lee, Siwoo;Im, Jungho;Yoo, Cheolhee
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1447-1460
    • /
    • 2021
  • Urbanization increases the amount of impervious surface and artificial heat emission, resulting in urban heat island (UHI) effect. Local climate zones (LCZ) are a classification scheme for urban areas considering urban land cover characteristics and the geometry and structure of buildings, which can be used for analyzing urban heat island effect in detail. This study aimed to examine the UHI effect by urban structure in Suwon and Daegu using the LCZ scheme. First, the LCZ maps were generated using Landsat 8 images and convolutional neural network (CNN) deep learning over the two cities. Then, Surface UHI (SUHI), which indicates the land surface temperature (LST) difference between urban and rural areas, was analyzed by LCZ class. The results showed that the overall accuracies of the CNN models for LCZ classification were relatively high 87.9% and 81.7% for Suwon and Daegu, respectively. In general, Daegu had higher LST for all LCZ classes than Suwon. For both cities, LST tended to increase with increasing building density with relatively low building height. For both cities, the intensity of SUHI was very high in summer regardless of LCZ classes and was also relatively high except for a few classes in spring and fall. In winter the SUHI intensity was low, resulting in negative values for many LCZ classes. This implies that UHI is very strong in summer, and some urban areas often are colder than rural areas in winter. The research findings demonstrated the applicability of the LCZ data for SUHI analysis and can provide a basis for establishing timely strategies to respond urban on-going climate change over urban areas.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP (공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류)

  • Kim, Jung-Su;Lee, Jeong-Hwan;Choe, Heung-Mun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • We proposed and efficient block segmentation and classification method for the document analysis using SGLDM(spatial gray level dependence matrix) and BP (back Propagation) neural network. Seven texture features are extracted directly from the SGLDM of each gray-level block image, and by using the nonlinear classifier of neural network BP, we can classify document blocks into 9 categories. The proposed method classifies the equation block, the table block and the flow chart block, which are mostly composed of the characters, out of the blocks that are conventionally classified as non-character blocks. By applying Sobel operator on the gray-level document image beforebinarization, we can reduce the effect of the background noises, and by using the additional horizontal-vertical smoothing as well as the vertical-horizontal smoothing of images, we can obtain an effective block segmentation that does not lead to the segmentation into small pieces. The result of experiment shows that a document can be segmented and classified into the character blocks of large fonts, small fonts, the character recognigible candidates of tables, flow charts, equations, and the non-character blocks of photos, figures, and graphs.

  • PDF