• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.035 seconds

Patterning Waterbirds Occurrences at the Western Costal Area of the Korean Peninsula in Winter Using a Self-organizing Map (인공신경회로망을 이용한 서해안 겨울철 수조류의 발생특성 유형화)

  • Park, Young-Seuk;Lee, Who-Seung;Nam, Hyung-Kyu;Lee, Ki-Sup;Yoo, Jeong-Chil
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.2
    • /
    • pp.149-157
    • /
    • 2007
  • This study focused on patterning waterbirds occurrences at the western costal area of the Korean Peninsula in winter and relating the occurrence patterns with their environmental factors. Waterbird communities were monitored at 10 different study areas, and the composition of land cover as environmental factors was estimated at each study area. Overall dabbling ducks were the most abundant with 84% of total individuals, followed by shorebird and diving ducks. Species Anae platyrhynchos was the first dominant species, and Anas formosa was the second one. Self-organizing map (SOM), an unsupervised artificial neural network, was applied for patterning wintering waterbird communities, and identified 6 groups according to the differences of communities compositions. Each group reflected the differences of indicator species as well as their habitats.

Post-ischemic Time-dependent Activity Changes of Hippocampal CA1 cells of the Mongolian Gerbils

  • Won, Moo-Ho;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.247-251
    • /
    • 2007
  • Changes of single unit activity of CA1 hippocampus region were investigated in anesthetized Mongolian gerbils for six days following transient ischemia. Ischemia was produced immediately before the implantation of micro-wire recording electrodes. In control animals receiving pseudo-ischemic surgery, neither spontaneous neuronal activities ($5.70{\pm}0.4Hz$) nor the number of recorded neurons per animal changed significantly for six days. Correlative firings among simultaneously recorded neurons were weak (correlation coefficient > 0.6) in the control animals. Animals subjected to ischemia exhibited a significant elevation of neural firing at post-ischemic 12 hr ($9.95{\pm}0.9Hz$) and day 1 ($8.48{\pm}0.8Hz$), but a significant depression of activity at post-ischemic day 6 ($1.84{\pm}0.3Hz$) when compared to the activities of non-ischemic control animal. Ischemia significantly (correlation coefficient > 0.6) increased correlative firings among simultaneously recorded neurons, which were prominent especially during post-ischemic days 1, 2 and 6. Although the numbers of spontaneously active neurons recorded from control group varied within normal range during the experimental period, those from ischemic group changed in post-ischemic time-dependent manner. Temporal changes of the number of cells recorded per animal between control group and ischemic group were also significantly different (p = 0.0084, t = 3.271, df = 10). Cresyl violet staining indicated significant loss of CA1 cells at post-ischemic day 7. Overall, we showed post-ischemic time-dependent, differential changes of three characteristics, including spontaneous activity, network relationship and excitability of CA1 cells, suggesting sustained neural functions. Thus, histological observation of CA1 cell death till post-ischemic day 7 may not represent actual neuronal death.

Study on Development of Artificial Neural Network Forecasting Model Using Runoff, Water Quality Data (유출량 및 수질자료를 이용한 인공신경망 예측모형 개발에 관한 연구)

  • Oh, Chang-Ryeol;Jin, Young-Hoon;Kim, Dong-Ryeol;Park, Sung-Chun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1035-1044
    • /
    • 2008
  • It is critical to study on data charateristics analysis and prediction for the flood disaster prevention and water quality monitoring because discharge and TOC data in a river channel are strongly nonlinear. Therefore, in the present study, prediction models for discharge, TOC, and TOC load data were developed using approximation component in the last level and detail components segregated by wavelet transform. The results show that the developed model overcame the persistence phenomenon which could be seen from previous models and improved the prediciton accuracy comparing with the previous models. It might be expected that the results from the present study can mitigate flood disaster damage and construct active alternatives to various water quality problems in the future.

Application of Excitation Moment for Enhancing Fault Diagnosis Probability of Rotating Blade (회전 블레이드의 결함진단 확률제고를 위한 가진 모멘트 적용)

  • Kim, Jong Su;Choi, Chan Kyu;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • Recently, pattern recognition methods have been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov models (HMMs) and artificial neural networks (ANNs) have recently been used as pattern recognition methods in various fields. In this study, a HMM-ANN hybrid method for the fault diagnosis of a mechanical system is introduced, and a rotating wind turbine blade with a crack is selected for fault diagnosis. The existence, location, and depth of said crack are identified in this research. For improving the diagnostic accuracy of the method in spite of the presence of noise, a moment with a few specific frequencies is applied to the structure.

Rainfall-Runoff Analysis Utilizing Multiple Impulse Responses (복수의 임펄스 응답을 이용한 강우-유출 해석)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2006
  • There have been many recent studies on the nonlinear rainfall-runoff modeling, where the use of neural networks is shown to be quite successful. Due to fundamental limitation of linear structures, employing linear models has often been considered inferior to the neural network approaches in this area. However, we believe that with an appropriate extension, the concept of linear impulse responses can be a viable tool since it enables us to understand underlying dynamics principles better. In this paper, we propose the use of multiple impulse responses for the problem of rainfall-runoff analysis. The proposed method is based on a simple and fixed strategy for switching among multiple linear impulse-response models, each of which satisfies the constraints of non-negativity and uni-modality. The computational analysis performed for a certain Korean hydrometeorologic data set showed that the proposed method can yield very meaningful results.

Adaptive Learning Circuit For Applying Neural Network (뉴럴 네트워크의 적용을 위한 적응형 학습회로)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.534-540
    • /
    • 2008
  • The adaptive learning circuit is designed on the basis of modeling of MFSFET (Metal-Ferroelectric-Semiconductor FET) and the numerical results is analyzed. The output frequency of the adaptive learning circuit is inversely proportional to the source-drain resistance of MFSFET and the capacitance of the circuit. The saturated drain current with input pulse number is analogous to the ferroelectric polarization reversal. It indicates that the ferroelectric polarization plays an important role in the drain current control of MFSFET. The output frequency modulation of the adaptive learning circuit is investigated by analyzing the source-drain resistance of MFSFET as functions of input pulse numbers in the adaptive learning circuit and the dimensionality factor of the ferroelectric thin film. From the results, adaptive learning characteristics which means a gradual frequency change of output pulse with the progress of input pulse, are confirmed. Consequently it is shown that our circuit can be used effectively in the neuron synapses of neural networks.

Implementation of Smart Meter Applying Power Consumption Prediction Based on GRU Model (GRU기반 전력사용량 예측을 적용한 스마트 미터기 구현)

  • Lee, Jiyoung;Sun, Young-Ghyu;Lee, Seon-Min;Kim, Soo-Hyun;Kim, Youngkyu;Lee, Wonseoup;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.93-99
    • /
    • 2019
  • In this paper, we propose a smart meter that uses GRU model, which is one of artificial neural networks, for the efficient energy management. We collected power consumption data that train GRU model through the proposed smart meter. The implemented smart meter has automatic power measurement and real-time observation function and load control function through power consumption prediction. We determined a reference value to control the load by using Root Mean Squared Error (RMS), which is one of performance evaluation indexes, with 20% margin. We confirmed that the smart meter with automatic load control increases the efficiency of energy management.

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Recently, deep learning technology is widely used in various computer vision applications, such as object recognition, classification, and image generation. In particular, the deep learning-based super-resolution has been gaining significant performance improvement. Fast super-resolution convolutional neural network (FSRCNN) is a well-known model as a deep learning-based super-resolution algorithm that output image is generated by a deconvolutional layer. In this paper, we propose an FPGA-based convolutional neural networks accelerator that considers parallel computing efficiency. In addition, the proposed method proposes Optimal-FSRCNN, which is modified the structure of FSRCNN. The number of multipliers is compressed by 3.47 times compared to FSRCNN. Moreover, PSNR has similar performance to FSRCNN. We developed a real-time image processing technology that implements on FPGA.

Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning

  • Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2018
  • Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.