• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.037 seconds

The review of neural basis for prosocial moral motivation and moral decision-making (친사회적-도덕적 동기 및 도덕적 의사결정의 신경학적 기제에 대한 개관 연구)

  • Jung, Ju-Youn;Han, Sang-Hoon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.555-570
    • /
    • 2011
  • In order to do morally right behavior that we cognitively know, prosocial moral motivation is necessary. Previous studies revealed emotion is important for prosocial moral motivation. This was supported by cognitive neuroscience studies using functional magnetic resonance imaging(fMRI) in which the activity of ventral striatum(VS) was observed when people made moral decision. VS was originally known as the core area of reward process but recently VS was found to respond also to social reward and even feeling of prosocial emotion itself. However it is not clear why VS was activated when people experience prosocial moral sentiments. The aims of this review article were to find situations in which people are prosocially and morally motivated and to understand more about the role of emotion as a moral motivator by examining evidence regarding the neural network, including VS, of prosocial moral motivation and moral decision-making.

  • PDF

R-Trader: An Automatic Stock Trading System based on Reinforcement learning (R-Trader: 강화 학습에 기반한 자동 주식 거래 시스템)

  • 이재원;김성동;이종우;채진석
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.785-794
    • /
    • 2002
  • Automatic stock trading systems should be able to solve various kinds of optimization problems such as market trend prediction, stock selection, and trading strategies, in a unified framework. But most of the previous trading systems based on supervised learning have a limit in the ultimate performance, because they are not mainly concerned in the integration of those subproblems. This paper proposes a stock trading system, called R-Trader, based on reinforcement teaming, regarding the process of stock price changes as Markov decision process (MDP). Reinforcement learning is suitable for Joint optimization of predictions and trading strategies. R-Trader adopts two popular reinforcement learning algorithms, temporal-difference (TD) and Q, for selecting stocks and optimizing other trading parameters respectively. Technical analysis is also adopted to devise the input features of the system and value functions are approximated by feedforward neural networks. Experimental results on the Korea stock market show that the proposed system outperforms the market average and also a simple trading system trained by supervised learning both in profit and risk management.

Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks (Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구)

  • Ryu Kyung-Han;Lee Song-Jae;Soh Dea-Wha;Hong Sang-Jeen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1588-1593
    • /
    • 2005
  • In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.

(A Design of Adaptive Neural Network Filter to Remove the Baseline Wander of ECG) (심전도 신호의 기저선 잡음 제거를 위한 적응 신경망 필터 설계)

  • Lee, Geon-Gi;Kim, Yeong-Il;Lee, Ju-Won;Jo, Won-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.76-84
    • /
    • 2002
  • In this paper, it is studied to remove the baseline wander and to minimize the distortion of ST segment in the noise filtering of ECG. In general, the standard filter and adaptive filter are used to remove the baseline wander of the ECG. But the standard filter is limited because the frequency of the baseline signal is variable and the apative filter is difficult to select the reference signal in case of using the adaptive filter. So we proposed a new method of the structure without reference signal using neural networks. To be convinced of the performance of this method, we used ECG data of MIT-BIHs. and obtained the result of the high performance,(-53.3[dB]) than standard filter(-16.3[dB]) and adaptive filter (-44.9[dB]).

GAM: A Criticality Prediction Model for Large Telecommunication Systems (GAM: 대형 통신 시스템을 위한 위험도 예측 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • Criticality prediction models that determine whether a design entity is fault-prone or non fault-prone play an important role in reducing system development costs because the problems in early phases largely affect the quality of the late products. Real-time systems such as telecommunication systems are so large that criticality prediction is mere important in real-time system design. The current models are based on the technique such as discriminant analysis, neural net and classification trees. These models have some problems with analyzing causes of the prediction results and low extendability. This paper builds a new prediction model, GAM, based on Genetic Algorithm. GAM is different from other models because it produces a criticality function. So GAM can be used for comparison between entities by criticality. GAM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering Internal characteristics and accuracy of prediction.

  • PDF

An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method (ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰)

  • Kim, Sang-Woon;Shin, Seong-Hyo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

Prediction of Shear Strength of FRP Concrete Beams without Stirrups by Artificial Neural Networks (인공신경망에 의한 스터럽 없는 FRP 콘크리트 보의 전단강도 예측)

  • Lee, Cha-Don;Kim, Won-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.801-804
    • /
    • 2008
  • Fiber reinforced plastics (FRP) are light in weight, non-corrosive and exhibits high tensile strength. FRPs having superior material properties to corrosive steels have been widely replacing steel bars or tendons used in concrete structures as flexural reinforcements. Although current design guidelines for estimating shear strength of FRP concrete beam follow the format of conventional reinforced concrete design method, there are noticeable differences among the existing formulas in calculating the contributions of concrete to shear resistance. In this paper, the artificial neural network (ANN) technique is employed as an analytical alternative to existing methods for predicting shear capacity of FRP concrete beams. Influential factors on shear strength were identified through literature review and input in ANN and the ANN was trained for the target ultimate shear obtained from database. The results from ANN were compared with existing formulas for its accuracy. It was found that the developed ANN were more closely predicting the test data than those of the currently available predictive equations.

  • PDF

Optimal Control of Time and Energy for Mobile Robots Using Genetic Algorithm (유전알고리즘을 이용한 이동로봇의 시간 및 에너지 최적제어)

  • Park, Hyeon-jae;Park, Jin-hyun;Choi, Young-kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.688-697
    • /
    • 2017
  • It is very difficult to solve mathematically the optimal control problem for non - linear mobile robots to move to target points with minimum energy related to velocity, acceleration and angular velocity in minimum time. This paper proposes a method to obtain optimal control gains with which mobile robots move with minimum energy related to velocity, acceleration and angular velocity in minimum time using genetic algorithms. Mobile robots are non - linear systems so that their optimal control gains depend on initial positions. Hence initial positions are divided into some partition points and optimal control gains are obtained at each partition point with genetical algorithms. These optimal control gains are used to train neural networks that generate proper control gains at arbitrary initial position. Finally computer simulation studies have been conducted to verify the effectiveness of the method proposed in this paper.

A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company (생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구)

  • Lee, Yong-Goo;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.179-190
    • /
    • 2009
  • In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.

  • PDF

Monitoring method of Unlawful Parking Vehicle using RFID technology and Neural Networks (RFID 기술과 신경망 알고리즘을 이용한 불법 주차 차량 감시 방법)

  • Hong, You-Sik;Kim, Cheon-Shik;Han, Chang-Pyoung;Oh, Seon;Yoon, Eun-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.13-20
    • /
    • 2009
  • RFIDs have been used a lot of control systems such as library and security efficiently. Unlawful parking control is one of them and it will bring a lot of merit. Especially, it can be used vehicles. If a vehicle comes to unlawful parking place, reader system read the tag of a vehicle. RFID reader confirm the vehicle and record current time at the same time send information related the vehicle to the server system. After, it can be activated. If the vehicle move from unlawful parking place, RFID reader record departed time. In this paper, we proposed a monitoring system for unlawful parking cars. Especially, it is certain that this proposed modelling is very efficient and correct.