• Title/Summary/Keyword: neural network.

Search Result 11,759, Processing Time 0.041 seconds

Visualized Malware Classification Based-on Convolutional Neural Network (Convolutional Neural Network 기반의 악성코드 이미지화를 통한 패밀리 분류)

  • Seok, Seonhee;Kim, Howon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.197-208
    • /
    • 2016
  • In this paper, we propose a method based on a convolutional neural network which is one of the deep neural network. So, we convert a malware code to malware image and train the convolutional neural network. In experiment with classify 9-families, the proposed method records a 96.2%, 98.7% of top-1, 2 error rate. And our model can classify 27 families with 82.9%, 89% of top-1,2 error rate.

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Rotary inverted pendulum control using PID-neural network controller (PID-신경망 제어기를 이용한 rotary inverted pendulum 제어)

  • 선권석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.901-904
    • /
    • 1998
  • In this paper, we describes PID-neural network controller for the rotary inverted pendulum. PID control is applied to many fields but has some problems in nonlinear system due to a variation of parameter. So, we should desing the controller which is adjusted PI parameters by the neural network which is learned by backpropagation algorithm. And we show that on-line control is possible through the PID-neural network controller. The angle of the pendulum is controlled and then the position of the rotating arm is also controlled to maintain with in the set point. Measurement of the pendulum angle is obtained using a potentionmeter. The objective of the experiment is to design a PID-neural network control system that positions the arm as well as maintains the ivnerted pendulum vertical. Finally, we describe the actual experiment system and confirm the experimental results.

  • PDF

IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition (패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

Neural Network Method for Tuning PID Gains (신경회로망을 이용한 PID 제어기의 이득조정)

  • Moon, Seok-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Nonlinear system control using neural network guaranteed Lyapunov stability (리아프노브 안정성이 보장되는 신경회로망을 이용한 비선형 시스템 제어)

  • Seong, Hong-Seok;Lee, Kwae-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.142-147
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural network can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural network. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. The whole control system constitutes controller using feedback linearization method. The weight of neural network which is used to implement nonlinear function is updated by the derived update-rule. The proposed control algorithm is verified through computer simulation.

  • PDF

Real-Time Dynamic Simulation of Vehicle and Occupant Using a Neural Network (시뮬레이터에서 동역학 실시간 처리를 위한 신경망 적용)

  • Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong;Lee, Dong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.

A multi-modal neural network using Chebyschev polynomials

  • Ikuo Yoshihara;Tomoyuki Nakagawa;Moritoshi Yasunaga;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.250-253
    • /
    • 1998
  • This paper presents a multi-modal neural network composed of a preprocessing module and a multi-layer neural network module in order to enhance the nonlinear characteristics of neural network. The former module is based on spectral method using Chebyschev polynomials and transforms input data into spectra. The latter module identifies the system using the spectra generated by the preprocessing module. The omnibus numerical experiments show that the method is applicable to many a nonlinear dynamic system in the real world, and that preprocessing using Chebyschev polynomials reduces the number of neurons required for the multi-layer neural network.

  • PDF