• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Typical Models of Artificial Neural Network and Their Application Fields to the Power System (인공신경회로망의 대표적 모델과 전력계통적용에 대한 조사연구)

  • Ko, Yun-Seok;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.143-146
    • /
    • 1990
  • The human brain has the most powerful capabilities in thinking, interpreting, remembering, and problem-solving. Artificial neural network is appeared by scientists who have tried to simulate such a human brain. The artificial neural network has the capability of learning, massive parallelism capability and robustness for disturbance which are necessary for power system application. In this paper, We reviewed the typical topologies and learning algorithms of artifical neural networks which can be used for pattern classification. And we surveyed for the applications of artifical neural network to the power system.

  • PDF

A study on Fault Diagnosis in Power systems Using Probabilistic Neural Network (확률신경회로망을 이용한 전력계통의 고장진단에 관한 연구)

  • Lee, Hwa-Seok;Kim, Chung-Tek;Mun, Kyeong-Jun;Lee, Kyung-Hong;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.53-57
    • /
    • 2001
  • This paper presents the new methods of fault diagnosis through multiple alarm processing of protective relays and circuit breakers in power systems using probabilistic neural networks. In this paper, fault section detection neural network (FSDNN) for fault diagnosis is designed using the alarm information of relays or circuit breakers. In contrast to conventional methods, the proposed FSDNN determines the fault section directly and fast. To show the possibility of the proposed method, it is simulated through simulation panel for Sinyangsan substation system in KEPCO (Korea Electric Power Corporation) and the case studies show the effectiveness of the probabilistic neural network mehtod for the fault diagnosis.

  • PDF

Performance Evaluation of Linear Regression, Back-Propagation Neural Network, and Linear Hebbian Neural Network for Fitting Linear Function (선형함수 fitting을 위한 선형회귀분석, 역전파신경망 및 성현 Hebbian 신경망의 성능 비교)

  • 이문규;허해숙
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 1995
  • Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.

  • PDF

Development of a 3D Simulator and Intelligent Control of Track Vehicle (궤도차량의 지능제어 및 3D 시률레이터 개발)

  • 장영희;신행봉;정동연;서운학;한성현;고희석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.107-111
    • /
    • 1998
  • This paper presents a now approach to the design of intelligent contorl system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. Moreover, We develop a Windows 95 version dynamic simulator which can simulate a track vehicle model in 3D graphics space. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The dynamic simulator for track vehicle is developed by Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

Neural Network Based Recognition of Machine Printed Hangul Characters of Low Quality

  • Lim, Kil-Taek;Kim, Ho-Yon;Nam, Yun-Seok;Kim, Hye-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1772-1775
    • /
    • 2002
  • In this paper, we propose a Hangul character recognition method in which new letter components as recognition units are introduced and the MLP (multilayer perceptrons) neural networks are employed for two-step recognition of Hangul. To recognize Hangul character, we divide it into two or three recognition units and extract the direction angle features of them to be fed to the corresponding neural network recognizers. The recognition results of neural network recognizers are combined by another neural network. The experiments were conducted on the Hangul characters from real letter envelopes which are collected in the mail centers in Korea and the results showed that our method performs better than the conventional one.

  • PDF

Learning of Fuzzy Membership Function by Novel Fuzzy-Neural Networks (새로운 퍼지-신경망을 이용한 퍼지소속함수의 학습)

  • 추연규;탁한호
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.2
    • /
    • pp.47-52
    • /
    • 1998
  • Recently , there have been considerable researches about the fusion of fuzzy logic and neural networks. The propose of thise researches is to combine the advantages of both. After the function of approximation using GMDP (Generalized Multi-Denderite Product)neural network for defuzzification operation of fuzzy controller, a new fuzzy-neural network is proposed. Fuzzy membership function of the proposed fuzzy-neural network can be adjusted by learning in order to be adaptive to the variations of a parameter or the external environment. To show the applicability of the proposed fuzzy-nerual network, the proposed model is applied to a speed control o fDC sevo motor. By the hardware implementation, we obtained the desriable results.

  • PDF

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

A Life Prediction of Insulation Degradation Using Neural Networks (신경회로망을 이용한 절연열화의 수명추정)

  • 이영상;김성홍;심종탁;윤헌주;임윤석;김재환;박재준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.297-300
    • /
    • 1998
  • In this paper, we obtained the data, which is required in training the neural network and diagnosing the degradation degree, by introducing the AE detection that is effective method in ordinary degradation diagnosis on activation. Automatic detection system to detect acoustic. As the results of generalization tests by appling neural network to the unknown AE patterns obtained from specimens, firstly as to evaluate an objective performance of neural network, the recognition ratio for no-void specimen is appeared. Also, in the evaluation for the adaptability of neural network with a untrained type of no-void specimen, it is confirmed that the result appears.

  • PDF

A Study on the Position Control of DC servo Motor Usign a Fuzzy Neural Network (퍼지신경망을 이용한 직류서보 모터의 위치 제어에 관한 연구)

  • 설재훈;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.51-59
    • /
    • 1997
  • In this paper, we perform the position control of a DC servo motor using fuzzy neural controller. We use the Fuzzy controller for the position control, because the Fuzzy controller is designed simpler than other intelligent controller, but it is difficult to design for the triangle membership function format. Therefore we solve the problem using the BP learning method of neural network. The proposed Fuzzy neural network controller has been applied to the position control of various virtual plants. And the DC servo motor position control using the fuzzy neural network controller is performed as a real time experiment.

  • PDF