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Abstract 
This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to 
compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy 
rules may not work and result in tracking errors in some cases.  First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed 
weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference 
compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating 
internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights.  
Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum 
system are conducted and performances are compared. 
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1. Introduction 
 
Recently, demand of interaction between human beings and 

systems is rapidly increasing. For systems to have interaction 
with human beings, some sorts of intelligent communication 
techniques are required. Intelligent communication between 
human beings and systems includes vocal communication, 
visual communication, and physical communication. For those 
communications, channel is an important factor between two 
systems. 

Fuzzy logic is known as one of powerful communication 
tools of representing human expression into machine 
expression. Transferring human knowledge to machines 
requires mapping between semantic processing and numerical 
processing such that machines can recognize human meaning. 
Fuzzy logic can convert vague linguistic human information to 
a single numerical value for controlling dynamical systems as a 
physical communication channel.  

In the framework of physical communication, fuzzy logic 
can be used as intelligent controllers for nonlinear systems, 
complicated systems, and uncertain systems. Fuzzy control has 
demonstrated successful performances in numerous examples 
in various control applications. Balancing control of the 
inverted pendulum system has been successfully demonstrated 
by fuzzy controllers [1-3]. Fuzzy controllers have been 

designed for controlling robot manipulators as well. 
Although fuzzy controllers work quite well in controlling 

nonlinear systems, they require time consuming procedure to 
obtain suitable fuzzy rules for a typical system. Designing 
fuzzy rules requires knowledge and experiences on the system 
so that a novice designer may have difficulty of designing rules.  

Once fuzzy rules are designed, systems can vary and have 
outer disturbances. Then poor performance can be expected. To 
solve this problem, an adaptive fuzzy control method of 
modifying fuzzy rules has been proposed. The adaptive fuzzy 
control scheme has a neural network structure whose each layer 
accomplishes fuzzy function process such as fuzzification, 
inference, and defuzzification. As a result, fuzzy rules can be 
adjusted adaptively by the back-propagation learning algorithm 
[4-8].   

In our previous research, the neuro-fuzzy control scheme 
based on Takagi-Sugeno (TS) fuzzy control structure has been 
implemented and tested for controlling the pendulum system 
[9]. In the experimental studies, we have found that initial 
conditions become important for stability since all the weight 
values of the neuro-fuzzy controller are selected randomly. 
Thus a major problem was how to stabilize the system at the 
beginning[9].  

Therefore, in this paper, a different neuro-fuzzy control 
scheme is presented to address initial stability problem. A 
nominal fuzzy controller with fixed weights is used as a 
primary controller. Since fuzzy rules are not optimized, 
performance may be degraded. We add a separate neural 
network to change fuzzy rules by modifying reference input 
values[10]. This forms the reference compensation technique 
control method as one of neural network control methods that 
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has been used for controlling the inverted pendulum system[11-
13]. 

To test the performance of the proposed neuro-fuzzy 
controller, experimental studies of the inverted pendulum 
system in the intelligent control educational kit are conducted.  

 
 

2. TS Fuzzy Control Structure 
 
Fuzzy controller can be described as a gain scheduling linear 

controller. Infinite number of controller gains can be obtained 
by the fuzzy controller to mimic look-up tables for different 
states with respect to uncertainties in the system. Fuzzy 
controller consists of several steps, defuzzification, inference, 
and fuzzification procedures to complete the fuzzy controller.  

The general fuzzy control structure is shown in Fig.1. 
Fuzzification process converts numerical crisp values to 
linguistic fuzzy set. It takes crisp input values )(te  and 
calculates the membership function e~ . Fuzzy inference 
process finds appropriate resultant rules based on inference 
between fuzzy rules. Finally, defuzzification process converts 
resultant fuzzy information u~ to a numerical value )(tu .  

 

Fig. 1 Fuzzy control structure 
 
TS fuzzy control algorithm uses the linear output instead of 

using Mamdani fuzzy rule method for the defuzzification 
process. Although Mamdani fuzzy rule represents if-then 
structure, mathematical formulation is difficult. But the 
linearized output representation of the TS structure makes the 
system be easier, simpler, and computationally faster. The 
difference is that the resultant part of if rules is linear. 

Membership function of error variables such as eθ , 
.
eθ , xe , 

.

xe  and a control input u  is shown in Fig. 2 
and those values are normalized at [-1, 1]. Here, the 
generalized PD-like fuzzy rules are used. 

 

 
Fig. 2 Membership functions 

 
The fuzzy rule statements of TS scheme are 

represented as follows: 

. .
: , ,i iR If e is A e isB then u p e q e rθ θθ θ θ θ θ θ θ= + +  

. .
: , ,x x j x j x x x x x xR If e isA e isB then u p e q e r= + +  

where , ,p q r are constants. The output can be easily formulated 
in mathematical form which makes possible for applying the 
back-propagation algorithm. 

Rules of the control input θu  for controlling a pendulum 

angle consist of θe and 
.
eθ . Similarly, for the cart, the control 

input xu  is composed of xe and 
.

xe . 

 
 

3. RBF Network Structure 
 
As a neural network compensator, the radial basis 

function(RBF) network is used as shown in Fig. 3. The RBF 
network is known for fast convergence and mathematically 
analyzable. It consists of the input, hidden, and output layer as 
shown in Fig. 3. 

 

 
Fig. 3 RBF neural network structure 

 
The hidden layer is nonlinear and the output layer is linear. 

The nonlinear function used in the hidden layer is the Gaussian 
function.  
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where jϕ is jth output of the hidden layer in (1) and jkw  is 

the weight between the jth hidden unit and kth output, and 
kb is 

the bias weight. 
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4. Neural Compensated Fuzzy Control Scheme 
 
4.1 RCT Control Scheme 

A neural network controller has been known as a powerful 
nonlinear controller so it can be used as a nonlinear controller 
by itself[11-14]. Combing the neural network with the fuzzy 
controller is expected to yield the better performance since 
merits of two intelligent tools are used. 

The proposed RCT neuro-fuzzy control scheme is different 
from the adaptive neuro-fuzzy control methods. The adaptive 
neuro-fuzzy control structure has a single neural network to 
conduct fuzzy logic operation in each layer. Here a neural 
network and a fuzzy controller are separately designed. The 
radial basis function network is added in cascade to the fuzzy 
controlled system shown in Fig. 1 as a prefilter.  

The neural network compensated fuzzy control structure is 
shown in Fig. 4. In the proposed scheme, instead of modifying 
fuzzy rules by weights of neural network directly, effects of 
changing fuzzy rules can be achieved indirectly  since the 
reference input can be modified with respect to errors by neural 
network. The input trajectory R is modified to Rn by the neural 
network in the way of minimizing the output error R Yε = − . 

 

 
Fig. 4 Neuro-fuzzy control block diagram  

 
Then, the system input error is modified as 

 NRYRe +−=   (3) 

where NR is the output of a neural network. The error e  

propagates into the fuzzy controller so that the membership 
function values ( )eμ  can be changed with respect to the value 
of Rn due to different input values.  The linear output of the 
fuzzy controller can be represented as 
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where 1 2 3, ,k k k  are suitable constants selected by intuition 
and R Yε = − . Then combining equation (4) with the dynamic 
equation becomes 

 τεε =++++ NN RkRkkkk
.

213

.

21   (5) 

4.2 Control Scheme for inverted pendulum system 
The detailed control structure is shown in Fig. 5. One neural 

network compensates for both angle and position error of the 
inverted pendulum system. Neural network modifies input 
values so that we can have effects of changing fuzzy rules. 

 

 
Fig. 5 Neural compensated fuzzy control structure for inverted 

pendulum system 
 
Then equation (4) can be separated into two fuzzy controller 

inputs. For the angle control, we have the following control 
input. 
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where 1 2,ϕ ϕ  are neural network outputs. 

For the position control,  
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where 3 4,ϕ ϕ  are neural network outputs. Thus, the 

system control input is given as a sum of two control inputs. 

 xuuu += θ  (8) 

A single input u has to control both angle and position of 
the inverted pendulum system. This leads to the difficulty of 
control. 

 
4.3 Learning Algorithm 

Then how to generate output signals of neural network to 
minimize the error is important problem. Internal weights of 
the neural network should be updated at every sampling time to 
minimize the error. Rearranging (6) and (7) yields the error 
equation as  
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Selecting the learning signal as (10) drives the inverse 
dynamic control that identifies the inverse system by neural 
network. 
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However, 1 2,k k are unknown values that are assumed to be 

determined from fuzzy logic.   

 )( 3342312211 xxx kkkkkkv +++++−= θθθ φφφφτ  (11) 

Thus, in real application, suitable values of 1 2 3, ,k k k  can be 

selected although values are not exact. The approximation error 
is not a problem since the learning rate η of neural network 
has the linear relationship with the learning signal v  and can 
be optimized by trial and error procedure. 

The objective function to be minimized is defined as 

 2

2
1 vE =  (12) 

Differentiating (12) yields the gradient with respect to 
weights, w( , , , )jk k j jw θ μ σ as 
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The weights are updated a s 
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where α is the momentum constant for helping the faster 
convergence of the error. The detailed weight updates for (14) 
are given by 
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where IN is the number of input neurons in the input layer  
and oN is the number of output neurons in the output layer. 

 
 

5. Experimental Studies 
 

5.1 Experimental Setup 
Fig. 6 shows the overall inverted pendulum system for the 

educational purpose. The system consists of the pendulum, 
control hardware, and a power system. Movements of the cart 
and the pendulum can be measured by encoders mounted on 
the rotating axis. Control hardware is shown in Fig. 7 It 
consists of an FPGA, a DSP, and motor drivers. 

 

 
Fig. 6 Overall system setup 

 

 
Fig. 7 Control hardware 

 
The block diagram of the system is shown in Fig. 8. The 

fuzzy controller embedded on a DSP 6713 board communicates 
with the FPGA module including encoder counters, PWM 
generators and ADC.  

 

 
Fig. 8 Overall system block diagram 

 
For the fuzzy controller, we have the following normalized 

values as listed in Table 1. Table 2 shows the values of linear 
parameters.  

 
Table 1. Normalization maximum value. 

 eθ  eθΔ  xe  xeΔ  

value 1 rad 10 rad/s 1 m 10 m/s 
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Table 2. TS Fuzzy parameters 

 1k  2k  3k  
Angle 200 2 0 

Position 100 50 0 
 
Initial values of learning for neural network are listed in 

Table 3. 
 

Table 3. Neural-network gains 

Learning rates value 

wη  0.0000001 

bη  0.0000001 

μη  0.000001 

ση  0.000001 
 

5.2 Trajectory tracking task  
The pendulum is required to maintain balancing while the 

cart follows the desired trajectory. Initially, the fuzzy controller 
is tested to control the pendulum. Without modifying the values 
of linear output parameters in defuzzification process, the 
pendulum becomes unstable. Thus, linear output values are 
modified to stabilize the system. The parameter values are 
selected as listed in Table 2.  

Fig. 9 shows the actual sinusoidal trajectory tracking results 
by two control schemes. Two control schemes work well.  
The corresponding error plots are shown in Figs. 10 and 11.  
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Fig. 9 Position tracking result of the cart 

 
Fig. 10 shows the angle error of the fuzzy controller. The 

corresponding position error is shown in Fig. 11. It is clearly 
shown that the position error of the proposed scheme is much 
smaller than that of the fuzzy controller. This confirms that 
neural network plays a role to minimize the tracking errors 
further. 

Fig.12 shows the corresponding compensation signals 
generated from the neural network. To clearly show the better 
performance by the proposed controller, the RMS errors are 
listed in Table 4. 
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Fig 10. Angle error of the pendulum  
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Fig 11. Position error of the inverted pendulum 
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Fig. 12 Compensation signals 

 
Table 4. RMS errors 

 Angle Position 
TS-Fuzzy 0.0032632 0.0084062 

RCT TS-Fuzzy 0.0036190 0.0048458 
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6. Conclusion 
 
The RBF neural network is added to the fuzzy controlled 

system to improve the performance. Although the adaptive 
fuzzy controller performs well, the new scheme is tested for the 
case where internal weights of fuzzy controller are fixed. The 
inverted pendulum system in the educational kit has been tested 
for the controller performances. In the proposed control scheme, 
control performance has been improved without a burden of 
finding optimal fuzzy rules. Experimental results show the 
better tracking performance by the proposed control scheme. 
This confirms that the neural controller plays quite an 
important role to improve the system performance by forming a 
neuro-fuzzy control structure.  
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