• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.034 seconds

Optimal Condition Gain Estimation of PID Controller using Neural Networks (신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

Knoledge Base Incorporated with Neural Networks

  • G.Y. Lim;Lee, K.Y..;E. H. Cho;Baek, D. S;Moon, S.R..;Kim, H. Y .
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.410-412
    • /
    • 1998
  • Subsymbolic Knowledge processing is said to be changed states of networks constructed from small elements. subsymbolic systems also make it possible to use connectionist models for knowledge processing. Connectionist realization such modulus are modulus linked together for solving a given problem. We study using neural networks as distinct actions. The output vectors produced by the neural networks are consider as a new facts. These new facts are then processed to activate another networks or used in the current production rule, The production rule is applying knowledge stored in the knowledge base to make inference. After neural networks knowledge base is constructed and trained. We present a running sample of incorporating neural network knowledge base. We implement using rochester connectionist simulator. We suggest that incorporating neural network knowledge base. Therefore incorporated neural network knowledge base ensures a cleaner solution which results in better perfor s.

  • PDF

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF

Damaged Traffic Sign Recognition using Hopfield Networks and Fuzzy Max-Min Neural Network (홉필드 네트워크와 퍼지 Max-Min 신경망을 이용한 손상된 교통 표지판 인식)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1630-1636
    • /
    • 2022
  • The results of current method of traffic sign detection gets hindered by environmental conditions and the traffic sign's condition as well. Therefore, in this paper, we propose a method of improving detection performance of damaged traffic signs by utilizing Hopfield Network and Fuzzy Max-Min Neural Network. In this proposed method, the characteristics of damaged traffic signs are analyzed and those characteristics are configured as the training pattern to be used by Fuzzy Max-Min Neural Network to initially classify the characteristics of the traffic signs. The images with initial characteristics that has been classified are restored by using Hopfield Network. The images restored with Hopfield Network are classified by the Fuzzy Max-Min Neural Network onces again to finally classify and detect the damaged traffic signs. 8 traffic signs with varying degrees of damage are used to evaluate the performance of the proposed method which resulted with an average of 38.76% improvement on classification performance than the Fuzzy Max-Min Neural Network.

Design of a Dingle-chip Multiprocessor with On-chip Learning for Large Scale Neural Network Simulation (대규모 신경망 시뮬레이션을 위한 칩상 학습가능한 단일칩 다중 프로세서의 구현)

  • 김종문;송윤선;김명원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.149-158
    • /
    • 1996
  • In this paper we describe designing and implementing a digital neural chip and a parallel neural machine for simulating large scale neural netsorks. The chip is a single-chip multiprocessor which has four digiral neural processors (DNP-II) of the same architecture. Each DNP-II has program memory and data memory, and the chip operates in MIMD (multi-instruction, multi-data) parallel processor. The DNP-II has the instruction set tailored to neural computation. Which can be sed to effectively simulate various neural network models including on-chip learning. The DNP-II facilitates four-way data-driven communication supporting the extensibility of parallel systems. The parallel neural machine consists of a host computer, processor boards, a buffer board and an interface board. Each processor board consists of 8*8 array of DNP-II(equivalently 2*2 neural chips). Each processor board acn be built including linear array, 2-D mesh and 2-D torus. This flexibility supports efficiency of mapping from neural network models into parallel strucgure. The neural system accomplishes the performance of maximum 40 GCPS(giga connection per second) with 16 processor boards.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Biologically inspired modular neural control for a leg-wheel hybrid robot

  • Manoonpong, Poramate;Worgotter, Florentin;Laksanacharoen, Pudit
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.101-126
    • /
    • 2014
  • In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions are achieved by a phase switching network (PSN) module. The combination of these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The complete neural circuitry is developed and tested using a physics simulation environment. This study verifies that the neural modules can serve a general purpose regardless of the robot's specific embodiment. We also believe that our neural modules can be important components for locomotion generation in other complex robotic systems or they can serve as useful modules for other module-based neural control applications.

Path-Based Computation Encoder for Neural Architecture Search

  • Yang, Ying;Zhang, Xu;Pan, Hu
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.188-196
    • /
    • 2022
  • Recently, neural architecture search (NAS) has received increasing attention as it can replace human experts in designing the architecture of neural networks for different tasks and has achieved remarkable results in many challenging tasks. In this study, a path-based computation neural architecture encoder (PCE) was proposed. Our PCE first encodes the computation of information on each path in a neural network, and then aggregates the encodings on all paths together through an attention mechanism, simulating the process of information computation along paths in a neural network and encoding the computation on the neural network instead of the structure of the graph, which is more consistent with the computational properties of neural networks. We performed an extensive comparison with eight encoding methods on two commonly used NAS search spaces (NAS-Bench-101 and NAS-Bench-201), which included a comparison of the predictive capabilities of performance predictors and search capabilities based on two search strategies (reinforcement learning-based and Bayesian optimization-based) when equipped with different encoders. Experimental evaluation shows that PCE is an efficient encoding method that effectively ranks and predicts neural architecture performance, thereby improving the search efficiency of neural architectures.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Modified elman neural network structure for nonlinear system identification (비선형 시스템 식별을 위한 수정된 elman 신경회로망 구조)

  • 정경권;권성훈;이인재;이정훈;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.917-920
    • /
    • 1998
  • In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.

  • PDF