• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Neural Nerwork Application to Bad Data Detection in Power Systems (전력계토의 불량데이타 검출에서의 신경회로망 응용에 관한 연구)

  • 박준호;이화석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.877-884
    • /
    • 1994
  • In the power system state estimation, the J(x)-index test and normalized residuals ${\gamma}$S1NT have been the presence of bad measurements and identify their location. But, these methods require the complete re-estimation of system states whenever bad data is identified. This paper presents back-propagation neural network medel using autoregressive filter for identification of bad measurements. The performances of neural network method are compared with those of conventional mehtods and simulation results show the geed performance in the bad data identification based on the neural network under sample power system.

A SIMULTANEOUS NEURAL NETWORK APPROXIMATION WITH THE SQUASHING FUNCTION

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • In this paper, we actually construct the simultaneous approximation by neural networks to a differentiable function. To do this, we first construct a polynomial approximation using the Fejer sum and then a simultaneous neural network approximation with the squashing activation function. We also give numerical results to support our theory.

A compliance control of telerobot using neural network (신경 회로망을 이용한 원격조작 로보트의 컴플라이언스 제어)

  • 차동혁;박영수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.850-855
    • /
    • 1991
  • In this paper, neural network-based compliance control of telerobot is presented, This is a method to learn the compliance of human behavior and control telerobot using learned compliance. The consistency of human behavior is checked using Lipschitz's condition. The neural compliance model is composed of a multi-layered neural network which mimics the compliant notion of the human operator. The effectiveness of proposed scheme ie verified by a simulation study.

  • PDF

Design of Adaptive Velocity Controller for Wind Turbines Using Self Recurrent Wavelet Neural Network (자기회귀 웨이블릿 신경망을 이용한 풍력 발전 시스템의 적응 속도 제어기 설계)

  • Song, Seung-Kwan;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1691-1692
    • /
    • 2008
  • In this paper, the adaptive neural network technique is proposed to control the speed of wind power generation system. For maximizing generated power effectively, adaptive neural algorithm based on SRWMM(Self Recurrent Wavelet Neural Network) is derived to on-line adjust the excitation winding voltage of the generator. Through computer simulations, it is shown that the proposed method can achieve smooth and asymptotic rotor speed tracking.

  • PDF

A Recurrent Neural Network Training and Equalization of Channels using Sigma-point Kalman Filter (시그마포인트 칼만필터를 이용한 순환신경망 학습 및 채널등화)

  • Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.3-5
    • /
    • 2007
  • This paper presents decision feedback equalizers using a recurrent neural network trained algorithm using extended Kalman filter(EKF) and sigma-point Kalman filter(SPKF). EKF is propagated, analytically through the first-order linearization of the nonlinear system. This can introduce large errors in the true posterior mean and covariance of the Gaussian random variable. The SPKF addresses this problem by using a deterministic sampling approach. The features of the proposed recurrent neural equalizer And we investigate the bit error rate(BER) between EKF and SPKF.

  • PDF

Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure (계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획)

  • 경계현;고명삼;이범희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

The nonlinear function approximation based on the neural network application

  • Sugisaka, Masanori;Itou, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.462-462
    • /
    • 2000
  • In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

A Study on Predictive PID Controller using Neural Network (신경회로망을 이용한 예측 PID 제어기에 관한 연구)

  • 윤광호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.247-253
    • /
    • 1999
  • In this paper predictive PID control system using neural network (NNPPID) is proposed to control temperature system. NNPPID is composed of neural network predictor forecasts the future output of plant based on the present input and output of plant. Neural self-tuner yields parameters of PID controller. Experiments prove that NNPPID temperature control system has better performance than conventional PID control.

  • PDF

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF