• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.033 seconds

Interference Signal Control using Neural Network in Digital Mobile Communication (이동 무선 통신에서 신경망을 이용한 간섭 신호 제어)

  • 나상동;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-116
    • /
    • 1998
  • In this paper, a back propagation neural network teaming algorithm based on the complex multilyer perceptron is represented for suppressing narrowband interference of the received signals in DS-SS mobile communication system. We proposed neural network adaptive correlator(NNAC) which has fast convergence rate and good performance with combining back propagation neural network and the receiver of DS-SS. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

  • PDF

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

Case-Selective Neural Network Model and Its Application to Software Effort Estimation

  • Jun, Eung-Sup
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.363-366
    • /
    • 2001
  • It is very difficult to maintain the performance of estimation models for the new breed of projects since the computing environment changes so rapidly in terms of programming languages, development tools, and methodologies. So, we propose to use the relevant cases for a neural network model, whose cost is the decreased number of cases. To balance the relevance and data availability, the qualitative input factors are used as criteria of data classification. With the data sets that have the same value for certain qualitative input factors, we can eliminate the factors from the model making reduced neural network models. So we need to seek the optimally reduced neural network model among them. To find the optimally case-selective neural network, we propose the search techniques and sensitivity analysis between data points and search space.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

Design of the Pattern Classifier using Fuzzy Neural Network (퍼지 신경 회로망을 이용한 패턴 분류기의 설계)

  • Kim, Moon-Hwan;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller (인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구)

  • Park, Young-Moon;Lee, Gue-Won;Choi, Myoen-Song
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

The Melody Composition by using Neural Network (신경망 기반의 멜로디 작곡법)

  • Jo, JaeYoung;Kim, YoonHo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • In this paper, in the middle of progressing popular music chord, a method of inserting melody is addressed, which utilized by analyzing chord progress pattern. Firstly, a method for transforming melody into bit pattern which is to be used for neural network input is described. In order to insert the melody, composition pattern is learned from back propagation neural network, and based on these data new melody is to be generated. Experimental results verified the possibility of neural network based computer composition.

  • PDF

Fault Location Technique of 154 kV Substation using Neural Network (신경회로망을 이용한 154kV 변전소의 고장 위치 판별 기법)

  • Ahn, Jong-Bok;Kang, Tae-Won;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1146-1151
    • /
    • 2018
  • Recently, researches on the intelligence of electric power facilities have been trying to apply artificial intelligence techniques as computer platforms have improved. In particular, faults occurring in substation should be able to quickly identify possible faults and minimize power fault recovery time. This paper presents fault location technique for 154kV substation using neural network. We constructed a training matrix based on the operating conditions of the circuit breaker and IED to identify the fault location of each component of the target 154kV substation, such as line, bus, and transformer. After performing the training to identify the fault location by the neural network using Weka software, the performance of fault location discrimination of the designed neural network was confirmed.

A Robust PID Control Method with Neural Network

  • Kang, Seong-Ho;Lee, Yong-Gu;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The problem of reducing the effect of an unknown disturbance on a dynamical system is one of the most fundamental issues in control design. We propose a robust PID (Proportional Integral Derivative) control method with neural network for improving the performance due to the rejection of an unknown disturbance. The proposed system consists of a model of the plant, a conventional PID controller and a multi-layer neural network, and is composed of two loop; the first loop enables the system to achieve stability of system, the second loop rejects an unknown disturbance. Simulation and experiment results show that the proposed method improves considerably on the performance of the conventional PID control method and the typical IMC method using neural network.

A Study on the Automatic Berthing Control of a Ship by Artificical Neural Network (인공신경망에 의한 선박의 자동접안에 관한 연구)

  • Lee, Seung-Keon;Lee, Gyoung-Woo;Lee, Seong-Jae;Jeong, Sung-Ryong
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • Along with the rapid growth of shipping and transportation , the size of a ship larger and larger. Low speed maneuverabililty of a full ship has been received a great deal of attention concerting about the navigation safety, especially in the harbour area of waterway. And, the iperation of the full ship in harbour area is one fo tehmost difficult technique. Usually highly experienced experts can make a suitable decision considering various propeller ,rudder actions and environmental conditions. The Artificial Neural Network is applied to the automatic berthing control of a ship. The teaching data are made by the berthing simulation of a ship on the computer. And, the layer neural network is used and the 'Error Back-Propagation Algorithm' is used to teach the neural network. Finally, it is shown that the berthing control is successfully done by the established neural network.

  • PDF