2001 4

T M| EE FA

&t
=1

SEE=H MB8A H2S

Case-Selective Neural Network Model and Its Application to

Software Effort Estimation

Eung Sup Jun

Korea Advanced Institute of Science and Technology

Abstract

It is very difficult to maintain the performance of estimation models for the new breed of projects since the computing environment changes
so rapidly in terms of programming languages, development tools, and methodologies. So, we propose to use the relevant cases for a neural
network model, whose cost is the decreased number of cases. To balance the relevance and data availability, the qualitative input factors are used
as criteria of data classification. With the data sets that have the same value for certain qualitative input factors, we can eliminate the factors from
the model making reduced neural network models. So we need to seek the optimally reduced neural network model among them. To find the
optimally case-selective neural network, we propose the search techniques and sensitivity analysis between data points and search space.

1. Introduction

The computing environment changes so rapidly in terms of
programming languages (from COBOL to C++, 4 generation
languages, object-oriented languages, visual tools, and GUI),
development tools (with and without CASE tools and components),
and platform (from the mainframe based computing to client-server
based computing and Web based computing).

Among the available estimation models, the neural network
models performed at least as good as the other approaches. However,
even with the neural network, it is very difficult to maintain the
estimation performance for the new breed of projects. So we need to
use only the relevant cases for estimation, which means that the
number of cases will be decreased. Thus we need to balance the
relevance and data availability. To solve this problem, we propose to
use the qualitative input factors as criteria of data classification.
With the data sets that have the same value for certain qualitative
input factors, we can eliminate the factors from the mode! building
reduced neural network models. So we need to seek the optimally
reduced neural network model among them. According to the paired
t-test, we could prove that the optimally reduced neural network
model can significantly reduce the error more effectively than the
full neural network model which uses the all data with the all input
factors. To find the optimally reduced model heuristically, we
propose the search algorithms which selects the data set and
associated reduced neural network model.

2. Al Models for software Effort Estimation

2.1. Case-Based Reasoning Models

The CBR model for the software effort estimation requires to
collect past project cases, and to retrieve the most similar case to the
target project according to a pre-defined similarity measure.
However the modification of the past case’s result identifying its
difference to the target is in most cases very difficult. In the software
effort estimation process, the modification process requires a
numeric model that can tell the difference of numerically presented
effort between the old case and new one. So the CBR approach alone
cannot overcome the goal of software effort estimation.

Another issue to be resolved in the CBR approach is the scope
quantitative and qualitative ones, and denoted as QT and QL. The
factors Is — I, can be treated as either QT or QL depending upon
whether we measure the value as a matter of degree or binary values.
Let us regard these factors as QT in this study even though they have
binary values. The same logic applies to /,, because the cases in the
current case base have only two values: 3GL and 4GL (Generation

363

of selecting past cases. It can be one, the closest case; or some,
closer cases. If there is variance in the past software efforts for the
same situations, using just one case is too risky. So we need a
generalizing estimator based on the relevant past cases. A concern is
how to decide the scope of relevant cases and the generalizing model.
Let us call the first issue the optimal selection of relevant cases
problem. If we select too few cases, the power of generalization will
diminish. However, if we select too many cases, the irrelevant cases
may distort the estimation. This is a theme that this paper attempts to
balance. The generalization process may use either a neural network
model or a statistical model.
2.2. Neural Network Models

Many studies have shown that the performance of the neural
network model is at least as powerful as statistical models. However,
the neural network also has the problem of optimal selection of
relevant cases because the computing environment that significantly
influences the software effort changes so rapidly. So we need to find
the relevant similar cases that explain the specialty of the target
project. If we use all of the past cases, the model becomes too dull
for the special characteristics of a changed environment. However,
we may not have a sufficient number of cases that are similar
enough to use for estimation. Thus we need to balance the similarity
and case point availability, which is what this research is pursuing.
Let us call the neural network model with all possible input factors
and all available cases, the Full Neural Network Model. To
distinguish the neural network model with reduced relevant cases
and reduced input factors (by eliminating the factors that have the
same values) from the full model, let us call reduced ones the
Reduced Neural Network Models. The goal of our research is to find
an optimally reduced neural network model for software effort
estimation.
3. Full Neural Network Model
3.1 Input Factors for Software Effort Estimation

To select the 23 input factors and their values, we surveyed the
opinions of 30 experts who have experiences of software
development and maintenance. The input factors are identified as [,
1,..,23. The input factors can be classified into

Language). In the neural network model, the qualitative factors are
represented as 0 or 1 (actually 0.001 or .999). So qualitative factors
do not make a big difference from the quantitative factors in
computation. A more important distinction in this study is that the
cases with the same qualitative values can be grouped as a case set.
Within a case set, we can eliminate the input factors that have the

2001 4

StAFEHeIESE F=AH

=13
=1,

i

1

;2= N8HM235

same values, making a reduced neural network model as mentioned

earlier. The case sets with a same qualitative value are denoted as D,

j=1,....8. Likewise, the case sets with two same qualitative factors
can be denoted as Dy, j#k, j=1,...,8, k=1,...,8, and so forth.
3.2. Performance of Full Model

The full neural network model has 23 input factors, one output
of man-month, and one hidden layer with the nodes from 23/2 (we
applied integer 12) to 2*23+1 (which is 47) with the increment of 5.
The model is trained by the back-propagation algorithm starting
from 500 epochs to 5,000 epochs with the increment of 500.

We have 50 cases in total. The cases are classified into two
group of A and B, 25 cases each. When group A is used for training,
group B is used for testing, and vice versa. So we have 50 test cases
in total. The optimal performance was found with 12 hidden nodes at
3,000 epochs.

The popular measure of errors is MMRE (Mean Magnitude of
Relative Error). This study adopted MMRE as the measure of errors.

The full model has the MMRE of 25.8%. This figure is not bad
if we compare it with the ones by the statistical models (50%-772%)
and CBR models (35%).

4. Reduced Neural Network Model

The reduced neural network models are the ones that have
eliminated the qualitative input factors with the same values. So the
number of input factors can be reduced from 23 (in the full modei) to
at most 15 in the software effort estimation model because we have
8 qualitative factors.

Now a question is how to find the
of eliminating input factors out of 2’: ,C, = 255 alternative
combinations. As mentioned earlier, the '~ demerit of
the reduced model is the reduced number of data points at the cost of
enhanced relevance. So just more reduction of the input factors does
not necessarily mean the performance improvement. To measure the
degree of reduction, we need to adopt the notion of similarity.

optimal combination

4.1. Measure of Similarity

Measure of similarity is widely used in the CBR to find the
most similar case to the target. Let us denote Case X and Y as (2) of
APPENDIX.

where v(I; ®) means the value of input factor i in Case X. By
comparing the values of each factor as (3) of APPENDIX,

the similarity between Cases X and Y, denoted as SIM(X Y) can be
computed by the equation in (4) of APPENDIX.

The similarity is proportional to the number of coinciding values
even though different weights, w;, can be applied to different factors
as (4) of APPENDIX. Let us assume all w;’s are 1 in this study.

To denote SIM(X,Y) = s in a simple notation, let us define SL(s) as
(5) of APPENDIX. Here, SL(5) means that there are s input factors
that have the same values.

4.2. Relevant Case Sets and Performance Evaluation
Groups

Suppose the SL(I) situation exists between a target case and
past cases in a case base. This means that at least one out of eight
qualitative input factors has the same value. To define the SL(/) with
the same value of input factor j, let us denote the situation as
SL(1\1Dy) where D; implies the data set with a same value in the
qualitative factor j.

In this study, we have two alternative values in each qualitative
factor. So we have two case sets in each SL(1{D,), one set for each
value. For instance, suppose D; is the development_type which has

364

two altemative values: new_development or maintenance. The two
case sets in SL(/|D,) are :

SL(1| v(development_type) = new_development) and
SL(1| v(development_type) = maintenance).

So to measure the performance of the reduced model with SL(/|D,),
we need to average the performances of case sets in SL(/{D}). In
total, we have ;C; * 2 = 16 case sets for SL(]) as denoted by
CS_D; aand CS_D; b, j=1,...,8 Thus we have ;C; = § groups of
average performance, denoted as 4P(D)), j = 1,...,8.

The same logic applies to SL(2). There are ,C, * 27 = |12 case sets
and 4C, = 28 average performance groups. According to this
notation, SL(0) corresponds to the full model.

Our concemn in designing a reduced neural network is finding
the optimal level of SL(s) and the best case set within SL(s) category.
We need to devise a search method that can find the optimal SL(s),
denoted as SL*(5).

5. Optimally Reduced Neural Network Model
5.1. Non-monotonicity

To find the optimal MMRE for the SL(s), we need to compare
the MMRE of altemative case sets in the SL(s). For instance,
MMREs of SL(1|Dy) are : SL(I1|D;) = 23.4%, SL(1|Dy) = 25.4%,
SL(1|Dy) = 23.7%, SL(1|D,) = 23.0%, SL(1|Ds) = 45.9%, SL(1|Dy) =
28.9%, — SL(1|D;) =26.8%, SL(1{D,) = 20.7%,

Thus SL*1) = ™" [(SL(1|D;) j=1..8] = SL(l| Dy.

SL(1| Dg) means that the factor I;; (whether to use or not use the
CASE Tool, that corresponds to the data set Dj) will be eliminated
from the input factors of the neural network model, and the model is
estimated using the data set Dj.

In the same manner, we can discover SL¥*(2) = SL(2| D;, Dy,
SL*(3) = SL(3| D,, D3, Dy), and so forth. The optimal combinations
of input factors for each SL*(s), s=1, ...,8 are summarized in Table 1.

In this case, the optimally reduced neural network model is
SL*(5) with the MMRE of min 18.6%. [(SL*(s), s
1,..8) 1= SL*5) = SL(5| = D,D,D3DsDy

Recall that the MMRE of the full model was 25.8%, and note that
the SL*(s) are not monotonic. So the issue is how to find the
minimum SL *(s) efficiently, which is dealt in the next section.
5.2. Validation of the Performance of Reduced Model
To confirm whether the optimally reduced model SL*(5)
significantly outperforms the full model, we have conducted a
paired-t test.
- Null Hypothesis(Hy) : MMREg, gy = MMREg; «(5
- Alternative Hypothesis(H;) : MMREg 09y > MMREg; +s)
Statistic Items Significance Level [Decision
t-value = 1.875, P-value=0.03 ja=0.05
gree of freedom = 98 (t,, > 1.645)

[Fail to accept Ho

The test confirms that the optimally reduced model significantly
outperforms the full model at 5% of significance.
5.3. ADD and DROP Algorithms

Since the MMRE is not monotonic to s, we need to devise
algorithms that can find the optimal (or approximate optimal)
solution with a reduced search effort. In this study, we devise two
algorithms: ADD and DROP algorithms. If we search all
combinations of case sets, the SL*(5) can be found as optimum.
However the heuristic ADD algorithm means to increment the
similarity level a single qualitative factor at a time, while the DROP

o

2001 4

r

IREEMHelES FH

Ss2H=-FH NEAH25

algorithm decrement one at a time as depicted in Table 2.

The ADD algorithm actually starts with a full model, while the
DROP algorithm starts with a purely quantitative model. Let us
define the algorithms in general terms.

1) Notations
NL : Number of qualitative factors, which is 8 in this case.
2) ADD Algorithm

1) In the case of the full neural network model, SL*0) = SL(0).
All qualitative factors remain in the input factors.

2) Compute the MMREs of SL(1|\Dy),i=1,...,.NL.
Find SL*(1) [SL(I1Dy), i 1,...,NL]
SL(1{Dq,) where q; denotes i that satisfies SL*(1).

3) Compute the MMREs of SL(2|Dq,;, D;, i=1,...NL, i =q,).
Find SL*2) = ™" [SL2\Dg, D; i=1,..NL i #q)] =
SL(2|Dq;, Dq; where g, denotes the i that satisfies SL*2) in
addition to ¢,.

4) Repeat the addition of qualitative factors one at a time until a
stopping rule (a threshold of MMRE) is satisfied or the
qualitative factors are exhausted.

Now let us define the DROP Algorithm which is the reverse of the

ADD Algorithm.

min
= ;

3) DROP Algorithm

1) Compute the most reduced neural network model, SL*(NVL). All
qualitative factors are eliminated from the input factors.

2) Compute the MMREs of SL(NL-1} D;, i = 1,..., NL and i =) for

SL*NL-1)= ™" [SL(NL-I| D,
l,..NLandi # j)] =SL(NL-1| D, i=1,..., NL, i #r;) where r,
denotes the i that is dropped from SL*(NL).

3) Compute the MMREs of SL(NL-2| D, i =1,...,.NL, i #r; # j).
Find SL*WNL-2) [SLNL-2|D; i=1,...,NL, i =
j=k),j=1..,NL k=1 ,NL}=SL(NL-2|D,i=1,.,NL i=
r; # ry) where r; denotes i that is dropped from SL*(NL-/) in
addition to r,.

4) Repeat the elimination of the qualitative factors one at a time
until a stopping rule is satisfied or all qualitative factors are
exhausted.

5.4. Performance of Heuristic Algorithms and Stopping Rules
In our experiment, both ADD and DROP algorithms find the

optimally reduced neural network model even though there is no

guarantee that it will be found. To find the SL*(5), the ADD
algorithm computed 31 neural network models, while the DROP
algorithm computed 22 neural network models in our experiment.

Note that these figures are far smaller than all combinations of 255.

However, the smaller number for the DROP algorithm than that for

ADD algorithm cannot be interpreted as a general phenomenon. It

depends upon the characteristics of the case set we have and the

position of optimal point.

i =

min
b

365

6. Conclusion

To enhance the performance of software effort estimation
models under the rapidly changing computing environment, we have
attempted to use only the relevant cases and to reduce the qualitative
input factors of neural networks that have the same values. To find
the optimally reduced neural network, we have devised the ADD and
DROP algorithms that can heuristically find the (near) optimal
models. We have proved that the optimally reduced neural network
model can perform significantly better than the original neural
network model. These algorithms can be used not only for the
software effort estimation, but also for any neural networks that have
both quantitative and qualitative input factors.

REFERENCES
[1] Azuma, M., Mole, D. Software Management Practice and
Metrics in the European Community and Japan: Some Results of a
Survey. Systems Software, 1994.
[2] Blackburn, J.D., and Scudder, G.D. Improving Speed and
Productivity of Software Development: A Global Survey of
Software Developers. IEEE Transactions on Software Engineering,
Vol. 22, No. 12, December 1996.
[3] Deephouse, C.; Mukhopadhyay, T.; Goldenson, D.R.; and
Kellner, M.1. Software Process and Project Performance. Journal of
Management Information Systems, Vol. 12, No. 3, 1996.
[4] Finnie, G.R.,, Wittig, G.E., and Petkov, D.I. Prioritizing
Software Development Productivity Factors Using the Analytic
Hierarchy Process. Systems Software, Vol.22, 1993, pp129-139.
Maxwell, K.D.; Wassenhove, L.V.; and Dutta, S. Software
Development Productivity of European Space, Military, and
Industrial Applications. IEEE Transactions on Sofiware
Engineering, Vol.22, No. 10,0ctober 1996.
Rasch, R.H., and Tosi, HL. Factors Affecting Software
Developers’ Performance: An Integrated Approach. MIS
Quarterly, September 1992.
Redmond-Pyle, D., Software Development Methods and Tools:
Some Trends and Issues. Software Engineering Journal, March
1996.
Roberts Jr, T.L.; Gibson, M.L.; Fields, K.T.; and Rainer Jr, K.
Factors that Impact Implementing a System Development
Methodology. IEEE Transactions On Software Engineering,
Vol.24, No.8, August 1998, pp.640-649.
Saiedian,H.; Band, M.; and Bamey, D. The Strengths and
Limitations of Algorithmic Approaches to Estimating and
Managing Software Costs. International Business Schools
Computing Quarterly, Spring , 1992, pp. 21-22.
[10] Venkatachalam, A.R. Software Cost Estimation Using Artificial
Neural Networks. Proceedings of 1993 International Joint
Conference on Neural Networks, July 1993, pp. 987-990.

(3]

(6]

7

(8]

9

2001 ¥ SRS Helsts £ SR H=FY H8AH 25

Appendix
Table 1. Number of Data Points by Similarity Level
Similarity Level [Optimal Case Sets for Each Cases Sets with the SameValues No. of Data | MMRE Average Ratio of
SL*s) SL*) Points (:(:22 gi ' Per&ol\r;r;&coz)by Avall;t;lé Case
SL*(5) (D1,D2,D3,D5,D8) {d1a,d2a,d3a,d5a,d8a} 11 159 18.6 5/2°=0.17
{d1b,d2a,d3a,d5a,d8a} 9 325
{d1b,d2a,d3b,d5a,d8a)} 7 12.2
{d1b,d2a,d3b,d5a,d8b} 1 NA
{d1b,d2b,d3b,d5a,d8b} 12 17.3
{d1b,d2b,d3b,d5b,d8b)} 10 183

Table 6. Best MMRE by All Combination of Case Sets

Similarity Data Sets Added Factor by | Dropped Factor By | MMRE
Level ADD Algorithm | DROP Algorithm (%)
SL*0) {} Starting point Dy 2538
SL*(1) {Ds} Dy D, 20.7
SL*(2) {D1.Ds} D; D, 213
SL*(3) {D1.D3,Ds} Dy D, 20.8
SL¥4) {D1.D2,D1,Ds} D; Ds 199
SL*(5) {D:,D;,D;,Ds,Dg} Ds Dy 18.6
SL*(©) {D1,D2,D;,D5,D7,Ds} D, D, 195
SL*(7) {D1.D3,D3,D4,D5,D7,Ds} D, Ds 20.0
SL*@) {D1,D2,D5,D4.D5, D6 D7, Ds } Ds Starting point 21.6

Case X : Case™(v(I{”),.... v(r))

Case Y : Case™(v(if)..... v(ig)) }

(2)
1oy) = vi?)
1) = (3)
0 v(I¥) = wI1¥)
SIM(X,Y) = ﬁw,fu,-) (4
SIMXY) =s < SL(s) ®)

366

