• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill (신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발)

  • 김필호;문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF

Neural Network Based Camera Calibration and 2-D Range Finding (신경회로망을 이용한 카메라 교정과 2차원 거리 측정에 관한 연구)

  • 정우태;고국원;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.510-514
    • /
    • 1994
  • This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.

  • PDF

Chip Disposal State Monitoring in Drilling Using Neural Network (신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시)

  • , Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF

Lane and Obstacle Recognition Using Artificial Neural Network (신경망을 이용한 차선과 장애물 인식에 관한 연구)

  • Kim, Myung-Soo;Yang, Sung-Hoon;Lee, Sang-Ho;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.25-34
    • /
    • 1999
  • In this paper, an algorithm is presented to recognize lane and obstacles based on highway road image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, edge detection, and identification of lanes. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction and the presence of absence of an obstacle. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing lane and obstacles. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning of assistance system

  • PDF

A Study on the Grinding Trouble-Shooting Utilizing the Neural Network (Neural Network을 응용한 연삭가공 트러블 인식.처리에 관한 연구)

  • 하만경;김건희;곽재삼;송지복;이재경;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.113-117
    • /
    • 1995
  • Grinding operations is accomplished by rotating a gfinding wheel with lots of random abrasive at high speed, and its object is generally obtained the fanal workpiece surface of high quality as well as the maximization of workpiece removal rate. But, especiallysince grinding operations is related with a large amount of functional parameter, it is actually difficult to therapy that the grinding trouble occurs during the grinding process. Therefore, we trytodesign grinding trouble-shooting system utilizing the back-propagation model of neural network. The conceptual method is produced byidentifying the four parameters derived from the grinding power, and we are design te to the grinding trouble-shooting system on the basis of their data. In this paper, cognition and therapy method tothe grinding trouble which utilizes neural network based four identified models are suggested, and implementation results of computer simulation with respect to the grinding burn and chatter vibration is presented.

  • PDF

Detection of Grinding Troubles Utilizing a Neural Network (Neural Network을 이용한 연삭가공의 트러블 검지)

  • 곽재섭;송지복;김건희;하만경;김희술;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.131-137
    • /
    • 1994
  • Detection of grinding trouble occuring during the grinding process is classified into two types, i.e, based on the quantitative and qualitative knowledge. But, since the grinding operation is especially related with a large amount of functional parameters, it is actually defficult to cope with the grinding troubles occuring during process. Therefore, grinding trouble-shooting has difficulty in satisfying the requirement from the user. To cope with the grinding troubles occuring during the process, the application of neural network is on effective way. In this study, we identify the four parameters derived from the AE(Acoustic Emission) signals and present the grinding trouble-shooting system utilizing a back-propagation model of the neural network.

  • PDF

Application of Neural Network Model to the Real-time Forecasting of Water Quality (실시간 수질 예측을 위한 신경망 모형의 적용)

  • Cho, Yong-Jin;Yeon, In-Sung;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.321-326
    • /
    • 2004
  • The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.

Analysis on Kinematic Characteristics of a Machine Tool Parallel Manipulator Using Neural Network (신경망을 이용한 공작기계 병렬 매니퓰레이터의 기구학 특성 분석)

  • Lee, Je-Sub;Ko, Jun-Bin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • This paper describes the kinematics which is a new type of parallel manipulator, and the neural network is applied to solving the forward kinematics problem. The parallel manipulator called it as a Stewart platform has an easy and unique solution about the inverse kinematics. However, the forward kinematics is difficult to get a solution because of the lack of an efficient algorithm caused by its highly nonlinearity. This paper proposes the neural network scheme of an Newton-Raphson method alternatively. It is found that the neural network can be improved its accuracy by adjusting the offset of the obtained result.

Prediction for the Error of Hole Eccentricity in Hole-drilling Method Using Neural Network (신경회로망을 이용한 구멍뚫기법의 편심 오차 예측)

  • Kim, Cheol;Yang, Won-Ho;Chung, Ki-Hyun;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.956-963
    • /
    • 2001
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is predicted using the artificial neural network. The neural network has trained training examples of stress ratio, normalized eccentricity, off-centered direction and stress error using backpropagation loaming process. The prediction results of the error using the trained neural network are good agreement with FE analyzed ones.

  • PDF

Vehicle Dynamic Simulation Using the Neural Network Bushing Model (인공신경망 부싱모델을 사용한 전차량 동역학 시뮬레이션)

  • 손정현;강태호;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.110-118
    • /
    • 2004
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra's algorithm of ‘NARMAX’ form is employed in the neural network bushing module. A numerical example is carried out to verify the developed bushing model.