• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.042 seconds

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

A Study on Hanguel Character Recognition using GRNN (자소 인식 신경망을 이용한 한글 문자 인식에 관한 연구)

  • 장석진;강선미;김혁구;노우식;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.81-87
    • /
    • 1994
  • This paper describes the recognition of the printed Hanguel(Korean Character) using Neural Network. In this study, Neural network is used in only specific classification. Hanguel is classified globally by using template matching. Neural network is learned using the segmented grapheme. The grapheme of Hanguel is segmented using the structural method. Neural network is constructed, which is corresponded to the kind and the shape of graphemes. Each neural network is multi layer perceptron. The learning algorithm is the modified error back propagation using descending epsilon method. With five test character sets, the recognition rate of 94.95% is obtained.

  • PDF

Automatic EEG and Artifact Classification Using Neural Network (신경망을 사용한 뇌파 및 Artifact 자동 분류)

  • Ahn, Chang-Beom;Lee, Taek-Yong;Lee, Sung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The Electroencephalogram (EEG) and evoked potential (EP) t;ave widely been used for study of brain functions. The EEG and EP signals acquired from multi-channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG). Since these artifact-affected EEG signals degrade EEG mapping, the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. In this paper a neural-network based classification is proposed to replace or to reduce human expert's efforts and time. From experiments, the neural-network based classification performs as good as human experts : variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

Model for Papez Circuit Using Neural Network

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.423-426
    • /
    • 2003
  • In this paper, we use the modular neural network and recurrent neural network structure to implement the artificial brain information processing. We also select related adaptive learning methods to learn the entirely new input in the existed neural network. With this, a part of information process in brain is implemented as and autonomous and adaptive model by neural network and further more, the entire model for information process in brain can be introduced.

  • PDF

A Study on Development of ATCS for Automated Stacking Crane using Neural Network Predictive Control

  • Sohn, Dong-Seop;Kim, Sang-Ki;Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.346-349
    • /
    • 2003
  • For a traveling crane, various control methods such as neural network predictive control and TDOFPID(Two Degree of Freedom Proportional Integral Derivative) are studied. So in this paper, we proposed improved navigation method to reduce transfer time and sway with anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the NNPPID(Neural Network Predictive PID) controller to control the precise move and speedy navigation. The proposed predictive control system is composed of the neural network predictor, TDOFPID controller, and neural network self-tuner. We analyzed ASC(Automated Stacking Crane) system and showed some computer simulations to prove excellence of the proposed controller than other conventional controllers.

  • PDF

Image Segmentation Using A Fuzzy Neural Network (퍼지 신경회로망을 이용한 영상분할)

  • 김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.313-318
    • /
    • 2000
  • Image segmentation is to divide an image into similar parts or objects. This paper presents a segmentation system which consists of a fuzzy neural network and a set of image processing filters. The fuzzy neural network does not need initialization of weights. Therefore it does not have the underutilization problem. This fuzzy neural network controls the size and number of clusters by the vigilance parameter instead of fixing the number of clusters at the initial stage. This fuzzy neural network does not require large amount of memory as in Fuzzy c-Means algorithm. Two satellite images were segmented using the proposed system. The segmented results show that the proposed system is better on segmenting images.

  • PDF

Unification of Kohonen Neural network with the Branch-and-Bound Algorithm in Pattern Clustering

  • Park, Chang-Mok;Wang, Gi-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.134-138
    • /
    • 1998
  • Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.

  • PDF

Implementation and Experiment of Neural Network Controllers for Intelligent Control System Education

  • Lee, Geun-Hyeong;Noh, Jin-Seok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • This paper presents the implementation of an educational kit for intelligent system control education. Neural network control algorithms are presented and control hardware is embedded to control the inverted pendulum system. The RBF network and the MLP network are implemented and embedded on the DSP 2812 chip and other necessary functions are embedded on an FPGA chip. Experimental studies are conducted to compare performances of two neural control methods. The intelligent control educational kit(ICEK) is implemented with the inverted pendulum system whose movements of the cart is limited by space. Experimental results show that the neural controllers can manage to control both the angle and the position of the inverted pendulum systems within a limited distance. Performances of the RCT and the FEL control method are compared as well.

Acoustic Diagnosis of a Pump by Using Neural Network

  • Lee, Sin-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2079-2086
    • /
    • 2006
  • A fundamental study for developing a fault diagnosis system of a pump is performed by using neural network. Acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The neural network model used in this study was 3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer. And the codes of pump malfunctions were selected as units of output layer. Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. Neural network trained by acoustic signals can detect malfunction or diagnose fault of a given machine from the results.

Prediction for the Error due to Role Eccentricity in Hole-drilling Method Using Backpropagation Neural Network (역전파신경망을 이용한 구멍뚫기법의 편심 오차 예측)

  • Kim, Cheol;Yang, Won-Ho;Heo, Sung-Pil;Chung, Ki-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.436-444
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is predicted using the artificial neural network. The neural network has trained training examples of stress ratio, normalized eccentricity, off-centered direction and stress error using backpropagation learning process. The prediction results of the error using the trained neural network are good agreement with FE analyzed ones.