• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

Bankruptcy predictions for Korea medium-sized firms using neural networks and case based reasoning

  • Han, Ingoo;Park, Cheolsoo;Kim, Chulhong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.203-206
    • /
    • 1996
  • Prediction of firm bankruptcy have been extensively studied in accounting, as all stockholders in a firm have a vested interest in monitoring its financial performance. The objective of this paper is to develop the hybrid models for bankruptcy prediction. The proposed hybrid models are two phase. Phase one are (a) DA-assisted neural network, (b) Logit-assisted neural network, and (c) Genetic-assisted neural network. And, phase two are (a) DA-assisted Case based reasoning, and (b) Genetic-assisted Case based reasoning. In the variables selection, We are focusing on three alternative methods - linear discriminant analysis, logit analysis and genetic algorithms - that can be used empirically select predictors for hybrid model in bankruptcy prediction. Empirical results using Korean medium-sized firms data show that hybrid models are very promising neural network models and case based reasoning for bankruptcy prediction in terms of predictive accuracy and adaptability.

  • PDF

Industry Stock Returns Prediction Using Neural Networks (신경망을 이용한 산업주가수익율의 예측)

  • Kwon, Young-Sam;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.9 no.3
    • /
    • pp.93-110
    • /
    • 1999
  • The previous studies regarding the stock returns have advocated that industry effects exist over entire industry. As the industry categories are more rigid, the demand for predicting the industry sectors is rapidly increasing. The advances in Artificial Intelligence and Neural Networks suggest the feasibility of a valuable computational model for stock returns prediction. We propose a sector-factor model for predicting the return on industry stock index using neural networks. As a substitute for the traditional models, neural network model may be more accurate and effective alternative when the dynamics between the underlying industry features are not well known or when the industry specific asset pricing equation cannot be solved analytically. To assess the potential value of neural network model, we simulate the resulting network and show that the proposed model can be used successfully for banks and general construction industry. For comparison, we estimate models using traditional statistical method of multiple regression. To illustrate the practical relevance of neural network model, we apply it to the predictions of two industry stock indexes from 1980 to 1995.

  • PDF

The Study of Neural Networks Using Orthogonal function System in Hidden-Layer (직교함수를 은닉층에 지닌 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;유석용;엄기환;손동설
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.482-485
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN(Orthogonal Neural Network). Identification results using a nonlinear function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer

  • PDF

Modeling of Nuclear Power Plant Steam Generator using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 모델링)

  • 이재기;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.551-560
    • /
    • 1998
  • This paper presents a neural network model representing complex hydro-thermo-dynamic characteristics of a steam generator in nuclear power plants. The key modeling processes include training data gathering process, analysis of system dynamics and determining of the neural network structure, training process, and the final process for validation of the trained model. In this paper, we suggest a training data gathering method from an unstable steam generator so that the data sufficiently represent the dynamic characteristics of the plant over a wide operating range. In addition, we define the inputs and outputs of neural network model by analyzing the system dimension, relative degree, and inputs/outputs of the plant. Several types of neural networks are applied to the modeling and training process. The trained networks are verified by using a class of test data, and their performances are discussed.

  • PDF

A study on neural network for information switching function (정보교환기능을 위한 신경 회로망 연구)

  • 이노성;박승규;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.213-217
    • /
    • 1990
  • Neural networks are a class of systems that have many simple processors (neurons) which are highly interconnected. The function of each neuron is simple, and the behavior is determined predominately by the set of interconnections. Thus, a neural network is a special form of parallel computer. Although a major impetus for using neural networks is that they may be able to "learn" the solution to the problem that they are to solve, we argue that another, perhaps even stronger, impetus is that they provide a framework for designing massively parallel machines. The highly interconnected architecture of switching networks suggests similarities to neural networks. Here, we present two switching applications in which neural networks can solve the problems efficiently. We also show that a computational advantage can be gained by using nonuniform time delays in the network.e network.

  • PDF

Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot (DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계)

  • 차보남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System

  • Canbulut, Fazil;Sinanoglu, Cem;Yildirim, Sahin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.432-442
    • /
    • 2004
  • This paper presents a neural network predictor for analysing rigidity variations of hydrostatic bearing system. The designed neural network has feedforward structure with three layers. The layers are input layer, hidden layer and output layer. Two main parameter could be considered for hydrostatic bearing system. These parameters are the size of bearing pocket and the orifice dimension. Due to importancy of these parameters, it is necessary to analyse with a suitable optimisation method such as neural network. As depicted from the results, the proposed neural predictor exactly follows experimental desired results.

Predictive Modeling of Competitive Biosorption Equilibrium Data

  • Chu K.H.;Kim E.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2006
  • This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.

GENIE : A learning intelligent system engine based on neural adaptation and genetic search (GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진)

  • 장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF