• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.034 seconds

Single-Electron Devices for Hopfield Neural Network (홉필드 신경회로망을 위한 단일전자 소자)

  • Yu, Yun-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.16-21
    • /
    • 2008
  • This paper introduces a new type of Hopfield neural network using newly developed single-electron devices. In the electrical model of the Hopfield neural network, a single-electron synapse, used as a voltage(or current)-variable resistor, and two stages of single-electron inverters, used as a nonlinear activation function, are simulated with a single-electron circuit simulator using Monte-Carlo method to verily their operation.

Forward Kinematics Analysis of a Parallel Manipulator Using Neural Network (MEURAL NETWORK을 이용한 병렬매니플레이터의 순기구학 해석)

  • 이제섭;최병오;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.224-228
    • /
    • 2000
  • In this paper, the kinematics of the new type of parallel manipulator is studied, and neural network is applied to solve the forward kinematics problem. The parallel manipulator, called a Stewart platform, has an easy and unique solution about the inverse kinematics, however the forward kinematics is difficult to get the solution because of the lack of an efficient algorithm due to its highly nonlinearity. This paper proposes the neural network scheme as an alternative Newton-Raphson method. The neural network is found to improve its accuracy by adjusting the offset of the result obtained.

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

The application of neural network system to the prediction of pollutant concentration in the road tunnel

  • Lee, Duck-June;Yoo, Yong-Ho;Kim, Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.252-254
    • /
    • 2003
  • In this study, it was purposed to develop the new method for the prediction of pollutant concentration in road tunnels. The new method was the use of artificial neural network with the back-propagation algorithm which can model the non-linear system of tunnel environment. This network system was separated into two parts as the visibility and the CO concentration. For this study, data was collected from two highway road tunnels on Yeongdong Expressway. The tunnels have two lanes with one-way direction and adopt the longitudinal ventilation system. The actually measured data from the tunnels was used to develop the neural network system for the prediction of pollutant concentration. The output results from the newly developed neural network system were analysed and compared with the calculated values by PIARC method. Results showed that the prediction accuracy by the neural network system was approximately five times better than the one by PIARC method. ill addition, the system predicted much more accurately at the situation where the drivers have to be stayed for a while in tunnels caused by the low velocity of vehicles.

  • PDF

Human Face Recognition used Improved Back-Propagation (BP) Neural Network

  • Zhang, Ru-Yang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.471-477
    • /
    • 2018
  • As an important key technology using on electronic devices, face recognition has become one of the hottest technology recently. The traditional BP Neural network has a strong ability of self-learning, adaptive and powerful non-linear mapping but it also has disadvantages such as slow convergence speed, easy to be traversed in the training process and easy to fall into local minimum points. So we come up with an algorithm based on BP neural network but also combined with the PCA algorithm and other methods such as the elastic gradient descent method which can improve the original network to try to improve the whole recognition efficiency and has the advantages of both PCA algorithm and BP neural network.

Speaker Verification Using Hidden LMS Adaptive Filtering Algorithm and Competitive Learning Neural Network (Hidden LMS 적응 필터링 알고리즘을 이용한 경쟁학습 화자검증)

  • Cho, Seong-Won;Kim, Jae-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Speaker verification can be classified in two categories, text-dependent speaker verification and text-independent speaker verification. In this paper, we discuss text-dependent speaker verification. Text-dependent speaker verification system determines whether the sound characteristics of the speaker are equal to those of the specific person or not. In this paper we obtain the speaker data using a sound card in various noisy conditions, apply a new Hidden LMS (Least Mean Square) adaptive algorithm to it, and extract LPC (Linear Predictive Coding)-cepstrum coefficients as feature vectors. Finally, we use a competitive learning neural network for speaker verification. The proposed hidden LMS adaptive filter using a neural network reduces noise and enhances features in various noisy conditions. We construct a separate neural network for each speaker, which makes it unnecessary to train the whole network for a new added speaker and makes the system expansion easy. We experimentally prove that the proposed method improves the speaker verification performance.

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

A Study on Friction Coefficient Prediction of Hydraulic Driving Members by Neural Network (신경회로망에 의한 유압구동 부재의 마찰계수 추정 에 관한 연구)

  • 김동호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.53-58
    • /
    • 2003
  • Wear debris can be collected from the lubricants of operating machinery and its morphology is directly related to the fiction condition of the interacting materials from which the wear particles originated in lubricated machinery. But in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefore, if the shape characteristics of wear debris is identified by computer image analysis and the neural network, The four parameter (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction. It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network. We resented how the neural network recognize wear debris on driving condition.

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.