• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.041 seconds

Design of Multi-Dynamic Neural Network Controller using Nonlinear Control Systems (비선형 제어 시스템을 이용한 다단동적 신경망 제어기 설계)

  • Rho, Yong-Gi;Kim, Won-Jung;Cho, Hynu-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.122-128
    • /
    • 2006
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

3차원 물체인식을 위한 신경회로망 인식시트메의 설계

  • 김대영;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.1
    • /
    • pp.73-87
    • /
    • 1997
  • Multilayer neural network using a modified beackpropagation learning algorithm was introduced to achieve automatic identification of different types of aircraft in a variety of 3-D orientations. A 3-D shape of an aircraft can be described by a library of 2-D images corresponding to the projected views of an aircraft. From each 2-D binary aircraft image we extracted 2-D invariant (L, Φ) feature vector to be used for training neural network aircraft classifier. Simulations concerning the neural network classification rate was compared using nearest-neighbor classfier (NNC) which has been widely served as a performance benchmark. And we also introduced reliability measure of the designed neural network classifier.

A study on fuzzy-neural control of nonlinear system

  • Oh, Jae-Chul;Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.36-39
    • /
    • 1996
  • This paper proposes identification and control algorithm of nonlinear systems and the proposed fuzzy-neural network has following characteristics. The network is roughly divided into premise and consequence. The consequence function is nonlinear function which consists of three parameters and the membership function in the premise contains of two parameters. The parameters in premise and consequence are learned by the extended back-propagation algorithm which has a modified form of the generalized delta rule. Simulation results on the identification show that this method is more effective than that of Narendra [3]. The indirect fuzzy-neural control is made of the fuzzy-neural identification and controller. Result on the indirect fuzzy-neural control shows that the proposed fuzzy-neural network can be efficiently applied to nonlinear systems.

  • PDF

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

Position Control of Nonlinear Crane Systems using Dynamic Neural Network (동적 신경회로망을 이용한 비선형 크레인 시스템의 위치제어)

  • Han, Seong-Hun;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.966-972
    • /
    • 2007
  • This paper presents position control of nonlinear three-dimensional crane systems using neural network approach. Such crane system generally includes very complicated characteristic dynamics and mechanical framework such that its mathematical model is expressed by strong nonlinearity. This leads difficulty in control design for the systems. We linearize the nonlinear system model to construct PID control applying well-known linear control theory and then neural network is utilized to compensate system perturbation due to linearization. Thus, control input of the crane system is composed of nominal PID and neural output signals respectively. Our method illustrates simple design procedure, but system perturbation and modelling error are overcome through a neural compensator. As well. adaptive neural control is constructed from online learning. Computer simulation demonstrates our control approach is superior to the classic control systems.

Global Function Approximations Using Wavelet Neural Networks (웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교)

  • Shin, Kwang-Ho;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Determination of Machining Parameters for Two Dimensional Electrical Discharge Machining using Neural Networks (신경망을 이용한 2차원 방전가공 조건선정)

  • Lee, Keon-Beom;Ju, Sang-Yoon;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.145-153
    • /
    • 1998
  • In this paper, two parts of neural networks were proposed for determination of optimal EDM parameters. One is pattern recognition neural network that can be selecting expert neural network suitable to the EDM mode. The other is expert neural network that can be determining optimal EDM parameters such as pulse on time and pulse off time. Prior to determination of EDM parameters, Peak current, which is related to the EDM area closely, determined base on EDM area that is calculated from CAD data, firstly. Then, the other EDM parameters determined by the expert neural network that is selected to the EDM mode.

  • PDF

Optimal Gain Estimation of PID Controller Using Neural Networks (신경망을 이용한 PID 제어기의 최적 이득값 추정)

  • Park, Seong-Wook;Son, Jun-Hyug;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.134-141
    • /
    • 2004
  • Recently, neural network techniques are widely used in adaptive and learning control schemes for production systems. However, in general it takes up a lot of time to learn in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult for the PID gains suitably, lots of researches have been reported with respect of turning schemes of PID gains. A neural network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed neural network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accidents.

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF