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Abstract
The intent of this paper is to describe a neural network structure called multi dynamic

neural network(MDNN), and examine how it can be used in developing a learning

scheme for computing robot inverse kinematic transformations. The architecture and

learning algorithm of the proposed dynamic neural network structure, the MDNN, are

described. Computer simulations are demonstrate the effectiveness of the proposed

learning using the MDNN.

1. Introduction

Incessant researches have been made to identify

the linear system with unknown variables and to

control its adaptability, bringing forth remarkable

outcomes. The conventional technique of

adaptability control requires a mathematical model

with dynamic system, but the dynamic system is

non-linear and the strongly non-linear system is

very difficult to control. Actually, it is believed to

be impossible to exactly describe the dynamic

system model due to nonlinear, uncertainty, time

delay, variables of the time-dependent system,

structure and etc. The preciseness of a robot

controller, especially, depends on its moving

ability to the target position on the rectangular

coordinates in a specifically given working space.

Hence, dynamics-related problems should be

solved on real time basis in order to calculate the

articulatory angles toward the position of the

target control terminal. Such problems may be

solved by the arithmetic or geometric method or

repetition method〔1〕. The progress in the neural

network area has led us to a new dimension of

the robot control. The neural network, due to its

advantageous properties of function value and

dynamic repetition ability, can be used in learning

the coordinates conversion. The neural network

becomes able to learn how to combine exercise

patterns through its parallel dispersion process.

The structure of the neural network discussed in

this paper is the result of interaction which is

activated among neural sub-groups of excitatory



2006년 한국산학기술학회 추계 학술발표논문집

- 123 -

(positive) and inhibitory (negative) by neural

activities with random complexity, that is, MDNN

developed on the basis of neural physiology. A

learning algorithm is herewith presented for the

structure of MDNN and the flexible weight values

for neural network. Results of learning method

and computer simulations are also examined.〔2-5〕

2. Structure of Neural Network

2.1 Structure and Mathematic Model of MDNN

The basic function of MDNN with flexible

synapse strength is based on dynamic neural unit.

〔6-8〕

(ⅰ) Dynamic Neural Unit(DNU)

The memory unit of DNU is composed of

forward and backward route synapse weight as

shown in Fig. 1. The output of this dynamic

structure comprises the components for time-

dependent nonlinear activation function. DNU

performs two major functions; (i) synaptic

operation and (ii) somatic operation. The former

corresponds to the adaptability of forward and

backward route synapse weight and the latter to

that of gain (form) in nonlinear activation function.

What constitutes DNU is the forward and backward

route delay units weighted by synapse weights aff

and bfb, which reveals the second structure

following the nonlinear activation function.

v 1 (k)=- b 1 v 1 (k-1)- b 2 v 2 (k-2)+

a 0s(k)+ a 1s(k-1)+ a 2s(k-2) (1)

where s(k)∈Rⁿis neural input vector, v1(k)∈R¹is

output of dynamic structure, u(k)∈R¹is neural

output, k is dispersion time indicator, z
-
¹is unit

delay indicator. aff=〔a0, a₁,a₂〕and bfb=〔b₁,b

₂〕are defined as follows:

Fig. 1 Structure of DNU

Γ T (k, v 1,s)=[ v 1 (k-1) v 2 (k-1)]

s(k) s(k-1) s(k-1) (2)

ζ T ( a ff, b fb)=[ -b 1, -b 2, a 0, a 1, a 2 ]

(Γ:transpose) (3)

Formula (1) is determined by (2) and (3) as

follows;

v 1 (k)=Γ(k,v-1,s) ζ T ( a ff, b fb) (4)

Nonlinear value for v1(k) yields following outputs;

u (k)=Ψ [ g s v 1 (k)-θ] (5)

where Ψ〔․〕is nonlinear activation function,

normally called sigmoid function, gs is somatic

gain which controls the tilt of activation function

and θ is threshold igniting the neuron. In order

to strengthen the mathematical activities of both

excitatory and inhibitory, activation function for

〔-1,1〕should be defined as follows;

Ψ [v(k)]= tan [ g s v 1 (k)-θ]= tanh [v(k)] (6)

where v(k)=g(s) v 1 (k)이다.

(ⅱ) Multi Dynamic Neural Network(MDNN)

MDNN (Multi Dynamic Neural Network) is

composed of two DNU combined with excitatory

and inhibitory methods as shown in Fig. 2.
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Fig. 2 Structure of MDNN

In this structure, sλ(k) and uλ mean stimulus

(input) and state reaction (output) of neural

calculation unit when λ points to excitatory E or

inhibitory I. stλ (k) refers to total input of neural

unit, while wλλ points to interconnection strength

of synapse from one neuron to another (as shown
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by wIE, wEI in Fig. 2). The functional dynamics

excited by DNU, a neural calculation unit, is

defined as quadratic function as shown in formula

(1). State variables uE(k+1) and uI(k+1) generated

by the excitatory and inhibitory neural unit of the

proposed neural processor in time(k+1) will be

modelled as follows;

u E (k+1)=E [ u E (k), v E (k) ], and

u I (k+1)=I [ u I (k), v I (k) ] (7)

where vE(k) and vI(k) represent the rate of

neuron in the neural unit in which larger input

than the internal threshold is accepted, while E

and I represent the operation of excitatory and

inhibitory. The neuron which receives the input

larger than the critical value is given as nonlinear

function vλ(k), where the total input accompanied

by the inhibitory neural unit will be as follows;

s uE (k)= w E s E (k)+ w EE u E (k-1)

- w EE u I (k-1)- θ E (8)

s tI (k)= w I s I (k)- w II u I (k-1)

+ w EI u E (k-1)- θ I (9)

where wE and wI are scaling factor of the

excitatory and inhibitory neural unit each, while

wEE and wII represent the linking strength of

magnetic synapse, wIE and wEI that of mutual

neuron synapse, and θE and θI the critical value

of inhibitory neuron, respectively. Following

formulas show the absolute refractory period (a

period during which neuron can't be ignited

newly) of excitatory and inhibitory neuron.

u E (k+1)= u E (k)+(1- r E u E (k))

Ψ E [ s tE (k) ] : excitatory neuron (10a)

u I (k+1)= u I (k)+(1- r I u I (k))

Ψ I [ s tI (k)] : inhibitory neuron (10b)

According to the formulas (8) and (10), function

for an isoclinic curve can be formulated as

follows;

u I (k)=
1
w IE

[ ( w E s E (k)- θ E+

Ψ - 1
E [ u E (k)

(1- r E u E (k)) ]+ w EE u E (k) ] for
u E (k+1)=0 (11a)

u E (k)=
1
w EI

[ ( -w I s I (k)- θ I+

Ψ -1
I [ u I (k)

(1- r I u I (k))
]+ w II u I (k) ] for

u I (k+1)=0 (11b)

Thanks to the mathematical property of sigmoid

function, ΨE and ΨI have the solitary value

increasing simply within the range of〔 -∽, ∽〕.

uI, defined by the formulas (11a), is always the

simple increment function of uE. Whereas, uE, by

the (-) sign preceding ΨI
-1 in the formula (11b),

becomes the function of gradually decreasing uE1.

Such a qualitative difference between the two

isoclinic angles is the immediate result of the

asymmetry between excitatory and inhibitory.

Based on the fact that the functional operation of

neuron groups can be simulated by the nonlinear

system theory, the response u(k) of MDNN will

be the multiples of individual response uλ(k) of

excitatory and inhibitory in the neuron sub-group

and is given as follows;

u (k)= u E (k)+ u I (k) (12)

where the total activities of neuron group refer to

the sum of synapse response following excitatory

and inhibitory.

3. Development of Learning Algorithm for 

MDNN

3.1 Learning Algorithm for MDNN Controller

In the learning procedures, the adaptation

process of somatic gain is contained to minimize

the weight value of forward and backward route

as well as error function. By means of the

repetition learning technique, the control sequence

is transformed to generate the neuron output of

u(k) in order to reach the target status ud(k) at

each repetition learning stage. In other words, the

components of deviation e(k) and parameter
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vector Ω(aff, bfb, gs wλλ) are changing together

with each learning sequence k against the random

set under the initial condition.

u (k)→ u d (k) as k → ∞ or,

lim
k→∞

[ u d (k)-u(k)= e(K)] → 0 (13)

Solely the information set｛(e(k-m), e(k), Ω

(aff,bfb,gs, wλλ(k)｝is required to find the solution

of Ω(aff, bfb, gs wλλ)(k+1), where m=1, 2, … and

defines the size of constant. In line with the

increased learning frequencies, information set is

only reduced to｛Ω*(aff, bfb, gs, wλλ(k), e
*(k)｝,

indicating the optimum convergence of DNU

parameter and variance. The performance indicator

which should be optimized against each parameter

vector will be defined as follows, where E is

expectation operator;

J=E {F [e(k ; Ω( a ff, b fb, g s, w λλ )]} (14)

In the formula (14), the general form of F〔e(k; Ω

(aff, bfb, gs, wλλ〕is the symmetric function of

variance, i.e.

J=
1
2

E { [ e 2 (k ; Ω( a ff, b fb, g s, w λλ )]} (15)

where E is an expectation operator and e(k) is

an error sign defined as difference between the

target sign ud(k) and actual sign u(k). Each

component of vector Ω(aff, bfb, gs wλλ) is applied

in the way J is minimized by steepst-descent

algorithm. In the steepst-descent method,

parameter vector is arranged to be adjusted in

proportion to the negative curve of J , that is;

δ Ω( a ff, b fb, g s w λλ )(k) ∝ (-▽J) wher e,

▽J= δJ
δΩ( a ff, b fb, g s, w λλ )

(16)

Hence, if dia〔μ〕is an independent adaptation

gain matrix, the formula will be as follows;

δ Ω( a ff, b fb, g s w λλ )=

-dia[μ]
δJ

δΩ( a ff, b fb, g s, w λλ )
=-dia[ μ]▽J (17)

In the above formula, dia〔μ〕 is

dia[μ]=













μ ai 0 0 0
0 μ bj 0 0
0 0 μ gs 0
0 0 0 μ λλ'

(18)

where μai, i=0, 1, 2 μbi, j=1, 2, μgs is the

independent learning gain of DNU adaptation

parameter and wλλ represents the learning gain

linking the magnetic and mutual neuron synapse.

When synapse weight vector of DNU is described

by Ø(aff bfb), the tilt of performance indicator

against Ø(aff bfb) will be determined as following;

δJ
δΦ( a ff, b fb)

=
1
2

E[ δ[ u d (k)-u(k)] 2

δø( a ff, b fb)
]

=E [e(k){- δΨ(v)
δø( a ff, b fb)

δv
δø ( a ff b fb )

}]
=E[ e(k){ sech 2[v(k)]Pø( a ff, b fb )}] (19)

where

Pø( a ff, b fb)(k)=
δv(k)

δø( a ff, b fb)
= g s

δ v 1 (k)

δø( a ff, b fb)

representing the vector of parameter-status (or

sensitivity) signal.〔9-10〕

P∅( a ff (k))= g s [S(k-i)], i= 0,1,2 P∅ b f b i (k)

=- g s [ v 1 (k-j) ], j= 1,2 (20)

In the similar way, the tilt of performance

indicator for somatic gain gs is determined by the

following formula;

δJ
δ g s

=
1
2

E[ δ[ u d (k)-u(k)] 2

δ g s
]

=E[-e(k) { sech 2[v(k)]v 1 (k) }] (21)

The adaptation into the magnetic and mutual

neuron synapse linkage can be attained as

following;

δJ
δ w λλ'

=
1
2
E[ δ[ u d (k)-u(k)] 2

δ w λλ'
]

=E[-e(k) { sech 2[v(k)] g s u λ (k-1) }]

=E [-e(k) { δΨ(v)
δv

δv
d w λλ'

}] (22)

From the above formulas, the revised parameter

algorithm of MDNN can be described as foll.;
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a ffi (k+1)= a ffi (k)+μ a iE[e(k) sech 2 [v(k)]P∅

a ffi (k)], i= 0,1,2 (23a)

b fbi (k+1)= b fbi (k)+μ b iE[e(k) sec h 2 [v(k)]]

Pphj b fbi (k)], i= 1,2 (23b)

g s (k+1)= g s (k)+μ g sE[e(k) sec h 2 [v(k)]

v 1(k) ] (23c)

w λλ' (k+1)= w λλ' (k)+ μ λλ'E[-e(k) sech 2]

[v(k)]g suλ(k+1)] (23d)

3.2 Control Technique of Nonlinear Dynamic 

Systems

In order to optimize the control status of

nonlinear plant, MDNN controller should be able

to recognize the point of early saturation of

neural network and, accordingly, adjust the tilt of

nonlinear activation function. It is assumed that

the same parameter value is given for comparison

of the existing DNU and MDNN controllers.

Therefore, the initial weight value of MDNN is

fixed at 0.8694, learning rate η at 0.0003, value of

motion quantity term at 0.15 and dispersion time

at 800. Based on these values, following 3

simulations are performed.〔11-16〕

Fig. 3 A control modifier of nonlinear dynamic 
systems using  MDNN algorithm.

3.3 Computer Simulation

Case 1. Unknown Nonlinear Model

Mathematical model of the plant to control is

described by the equation with the degree as in

the formula (24).

y (k) = f [y (k-1), y (k-2), u (k),

u (k-1), u (k-2) ] (24)

where unknown nonlinear function f〔․〕is same

as the formula (25).

f [ ·]= [2 + cos { 7 π ( y2 (k-1)+y2 (k-2)]

+ e-u( k)/ 1+ u 2 (k-1)+ u 2 (k-2) (25)

where system input x(k) = sin(2πk/250).

Fig. 4 System input x(k) and property of 
unknown nonlinear function F[․] of 
simulation.

Fig. 5 Plant output and error response e(k) of 
existing DNU control in the 100th 
learning for simulation.

Fig. 6 Plant output and error reponse e(k) of 
existing MDNN control in the 100th 
learning for simulation.

Case 2. Plant Control by which unknown

nonlinear property changes

Unknown nonlinear function f〔․〕is changed

into 3 nonlinear functions during the control

process as shown in the formulars (26), (27) and

(28).

f [ ·]=
[ sin {π(y2(k-2)+0.5 )}]+0.3 sin ( 2π u (k))

1+u 2 (k-1)+u 2 (k-2)

for 0≤k≤99 and 500≤k〈599

(26)

f [ ·] = e - ( y2 (k-1)+y2 (k-2))

+ ∣{u 2 (k)+u 2 (k-1)+u 2 (k-2) }∣

for 200≤299, 400≤499 and 600≤k〈800

(27)
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x(k)= cos ( 2πk/ 250 ) 0≤k< 75
x(k)= 0.8 for 76≤k< 125
x(k)= 0.6 for 126≤k< 175
x(k)= 0.4 for 176≤k< 300
x(k)=-0.6 for 301≤k< 350
x(k)= 0.5 cos (2 πk/ 150) for 351≤k< 600
x(k)= cos ( 2 πk/250) for k≥601

f [ ·] =
[0.5-0.5 cosÿ( 7π (y2 (k-1)

4 + u 2 (k-1)

+ y2 (k-2)) }]+e-u ( k)

+ u 2 (k-2)

for 100≤k≤199 and 300≤k〈399

(28)

Fig. 7 System input x(k) and property of unknown
nonlinear function f[․] of simulation.

Fig. 8 Plant output and error e(k) of existing 
DNU control in the 100th learning for 
simulation.

Fig. 9 plant output and error response e(k) of 
existing MDNN control in the 100th 
learning for simulation.

Case 3. Plant Control by which unknown

nonlinear property changes

Plant and unknown nonlinear function f〔․〕are

same each other as shown in example 1 and

input signal x(k) changes as in the formular (29).

(29)

Fig. 10 System input x(k) and property nonlinear
function f[․] of simulation. 

Fig. 11 Plant output and error response e(k) of  
existing DNU control in the 100th 
learning for simulation.

Fig. 12 Plant output and error response e(k) of 
existing MDNN control 50th learning for 
simulation.

4. Conclusion

It is found that MDNN controller has improved

general convergence speed more than the DNU

single controller in terms of dependability,

strength, and adaptability in compliance with

change of control environment factors such as

changed basic input of plant, influence of

disturbance, change of system parameter value

and etc. In the words, nonlinear dynamic system

of the learning algorithm in the single neuron

network shows dependability and adaptability

staring from the 100th learning, while the system

control by neuron network fuzzy logic algorithm

proposed in this study enables the dependability

and adaptability to occur from the 50th learning

onwards. Consequently, the latter demonstrater

faster learning convergence and more improved

control performance than the former and, by thus,

that the plant output is better adapted to the

input signal.
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