• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

The Study of I.M. speed control using MRAC (MRAC방식의 유도전동기 속도제어에 관한 연구)

  • 전희종;김병진;정을기;박경옥;손희남
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.96-100
    • /
    • 1995
  • In this paper an induction motor control using fuzzy controller and neural network adptive observer is studied. The proposed observer which comprises neural network flux observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subjected to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations

  • PDF

A Study on ECG Oata Compression Algorithm Using Neural Network (신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구)

  • 김태국;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

A Study on The Optimization Method of The Initial Weights in Single Layer Perceptron

  • Cho, Yong-Jun;Lee, Yong-Goo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.331-337
    • /
    • 2004
  • In the analysis of massive volume data, a neural network model is a useful tool. To implement the Neural network model, it is important to select initial value. Since the initial values are generally used as random value in the neural network, the convergent performance and the prediction rate of model are not stable. To overcome the drawback a possible method use samples randomly selected from the whole data set. That is, coefficients estimated by logistic regression based on the samples are the initial values.

  • PDF

A Study on the Application of Hopfield Neural Network to Economic Load Dispatch (홉필드 신경회로망의 전력경제급전에의 응용에 관한 연구)

  • 엄일규;김유신;박준호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • Hopfield neural network has been applied to the problem of economic load dispatch(ELD) of electric power. The optimum values of neuron potentials are represented in terms of large numbers. The differential synchronous transition mode is used in this simulation. Through case studies, we have shown the possibility of the application of neural network to ELD. In case of including the transmission losses, the proposed method has an advantage that the problem can be solved simply with one neural network, without calculating incremental fuel costs and incremental losses required by traditional method.

A Channel Equalization Algorithm Using Neural Network Based Data Least Squares (뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

Construction of In-process Monitoring System using $C^{++}$ and Neural network ($C^{++}$과 신경망을 이용한 In-process 감시 시스템의 구축)

  • 조종래;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.95-98
    • /
    • 2002
  • Monitoring of the cutting trouble is necessarily required to do Factory Automation and Intelligent manufacturing system. Therefore, we constructed a monitoring system using neural network in order to monitor of the cutting trouble. From obtained result, it is shown that the cutting trouble can be monitored effectively by neural network

  • PDF

Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단)

  • 이인수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

Speed and Steering Control of Autonomous Vehicle Using Neural Network (신경회로망을 이용한 자율주행차량의 속도 및 조향제어)

  • 임영철;류영재;김의선;김태곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.274-281
    • /
    • 1998
  • This paper describes a visual control of autonomous vehicle using neural network. Visual control for road-following of autonomous vehicle is based on road image from camera. Road points on image are inputs of controller and vehicle speed and steering angle are outputs of controller using neural network. Simulation study confirmed the visual control of road-following using neural network. For experimental test, autonomous electric vehicle is designed and driving test is realized

  • PDF

Self-tuning Nonlinear PID Control Using Neural Network (신경망을 이용한 자기동조 비선형 PID제어)

  • Kim, Dae-Ho;Kim, Jung-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF