In this paper, we present a direct adaptive control method using neural networks for the control of nonlinear systems. The weights of neural networks are trained by an adaptive backpropagation algorithm based on Lyapunov stability theory. We develop the parameter update-laws using the neural network input and the error between the desired output and the output of nonlinear plant to update the weights of a neural network in the sense that Lyapunove stability theory. Beside the output tracking error is asymptotically converged to zero.
Proceedings of the Korea Water Resources Association Conference
/
2001.05a
/
pp.45-51
/
2001
The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.
Journal of the Korean Society of Mechanical Technology
/
v.20
no.6
/
pp.872-878
/
2018
Steam tables including superheated, saturated and compressed region were simultaneously modeled using the neural networks. Pressure and temperature were used as two inputs for superheated and compressed region. On the other hand Pressure and dryness fraction were two inputs for saturated region. The outputs were specific volume, specific enthalpy and specific entropy. The neural network model were compared with the linear interpolation model in terms of the percentage relative errors. The criterion of judgement was selected with the percentage relative error of 1%. In conclusion the neural networks showed better results than the interpolation method for all data of superheated and compressed region and specific volume of saturated region, but similar for specific enthalpy and entropy of saturated region.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.316-319
/
2014
People's interests in coffee are increasing with the expansion of coffee market. In this trend, people's taste becomes more luxurious and coffee bean's quality is considered to be very important. Currently, bean defects are mainly detected by experienced specialists. In this paper, a detection system of bean defects using machine learning is presented. This system concentrates on detecting two main defect types : bean's shape and insect damage. Convolutional Neural Networks are used for machine learning. The neural networks are comprised of two neural networks. The first neural network detects defects in the bean's shape, and the second one detects the bean's insect damage. The development of this system could be a starting point for automated coffee bean defects detection. Later, further research is needed to detect other bean defect types.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1669-1679
/
1996
In this paper, we address the problem of how to replace huffers in multimedia database systems with time-varying skewed data access. The access pattern in the multimedia database system to support audio-on-demand and video-on-demand services is generally skewed with a few popular objects. In addition the access pattem of the skewed objects has a time-varying property. In such situations, our analysis indicates that conventional LRU(least Recently Used) and LFU(Least Frequently Used) schemes for buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural suited. We propose a new buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural Networks)using a neural network for multimedia database systems with time-varying skewed data access. The major role of our neural network classifies multimedia objects into two classes:a hot set frequently accessed with great popularity and a cold set randomly accessed with low populsrity. For the classification, the inter-arrival time values of sample objects are employed to train the neural network.Our algorithm partitions buffers into two regions to combine the best roperties of LRU and LFU.One region, which contains the 핫셋 objects, is managed by LFU replacement and the other region , which contains the cold set objects , is managed by LRUreplacement.We performed simulation experiments in an actual environment with time-varying skewed data accsee to compare our algorithm to LRU, LFU, and LRU-k which is a variation of LRU. Simulation resuults indicate that our proposed algorthm provides better performance as compared to the other algorithms. Good performance of the neural network-based replacement scheme means that this new approach can be also suited as an alternative to the existing page replacement and prefetching algorithms in virtual memory systems.
Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.
An Artificial Neural Network including a Radial Basis Function (RBF) and a Time Delay Neural Network (TDNN) was used to predict total dissolved solid (TDS) in the river Zayanderud. Water quality parameters in the river for ten years, 2001-2010, were prepared from data monitored by the Isfahan Regional Water Authority. A factor analysis was applied to select the inputs of water quality parameters, which obtained total hardness, bicarbonate, chloride and calcium. Input data to the neural networks were pH, $Na^+$, $Mg^{2+}$, Carbonate ($CO{_3}^{-2}$), $HCO{_3}^{-1}$, $Cl^-$, $Ca^{2+}$ and Total hardness. For learning process 5-fold cross validation were applied. In the best situation, the TDNN contained 2 hidden layers of 15 neurons in each of the layers and the RBF had one hidden layer with 100 neurons. The Mean Squared Error and the Mean Bias Error for the TDNN during the training process were 0.0006 and 0.0603 and for the RBF neural network the mentioned errors were 0.0001 and 0.0006, respectively. In the RBF, the coefficient of determination ($R^2$) and the index of agreement (IA) between the observed data and predicted data were 0.997 and 0.999, respectively. In the TDNN, the $R^2$ and the IA between the actual and predicted data were 0.957 and 0.985, respectively. The results of sensitivity illustrated that $Ca^{2+}$ and $SO{_4}^{2-}$ parameters had the highest effect on the TDS prediction.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.19
no.8
/
pp.33-39
/
2005
The maximum output torque and power developed by the machine is ultimately depended on the allowable inverter current rating and maximum voltage which the inverter can supply to the machine. Therefore, considering the limited voltage and current capacities, it is desirable to consider a control method which yields the best possible torque per ampere. In this paper, we propose fuzzy neural network(FNN) controller that combines a fuzzy control and the neural network for high performance control of induction motor drive. This controller composes antecedence of the fuzzy rules and consequence by a clustering method and a multi-layer neural networks. This controller is compounding of advantages that robust control of a fuzzy control and high-adaptive control of the neural networks. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction moor. This strategy is reposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using FNN controller is verified by analysis results at dynamic operation conditions.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.2
/
pp.1059-1065
/
2014
Wind turbine system can obtain the maximum wind energy using torque control under the rated wind speed, and wind turbine power is controlled as the rated power using pitch control over the rated wind speed. In this paper, we present a method for wind turbine pitch controller using neural networks. The purpose of the pitch control is to control generator speed and power in the above rated wind speed. To improve the neural network pitch controller, the difference between a rated and current speed of generator has been used for another input of neural networks as well as wind speed. Error back-propagation algorithm is used for training the neural network pitch controller and simulation and Matlab/Simulink is used for verifying that this system is controlled well.
KIPS Transactions on Software and Data Engineering
/
v.11
no.9
/
pp.371-380
/
2022
Convolutional neural networks are widely used to manipulate data arranged in a grid, such as images. A general convolutional neural network consists of a convolutional layers and a fully connected layers, and each layer contains a nonlinear activation functions. This paper proposes a combined parametric activation function to improve the performance of convolutional neural networks. The combined parametric activation function is created by adding the parametric activation functions to which parameters that convert the scale and location of the activation function are applied. Various nonlinear intervals can be created according to parameters that convert multiple scales and locations, and parameters can be learned in the direction of minimizing the loss function calculated by the given input data. As a result of testing the performance of the convolutional neural network using the combined parametric activation function on the MNIST, Fashion MNIST, CIFAR10 and CIFAR100 classification problems, it was confirmed that it had better performance than other activation functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.