Detection of Coffee Bean Defects using Convolutional Neural Networks

Convolutional Neural Network를 이용한 불량원두 검출 시스템

  • Published : 2014.10.28

Abstract

People's interests in coffee are increasing with the expansion of coffee market. In this trend, people's taste becomes more luxurious and coffee bean's quality is considered to be very important. Currently, bean defects are mainly detected by experienced specialists. In this paper, a detection system of bean defects using machine learning is presented. This system concentrates on detecting two main defect types : bean's shape and insect damage. Convolutional Neural Networks are used for machine learning. The neural networks are comprised of two neural networks. The first neural network detects defects in the bean's shape, and the second one detects the bean's insect damage. The development of this system could be a starting point for automated coffee bean defects detection. Later, further research is needed to detect other bean defect types.

전 세계적으로 커피시장이 커짐에 따라서 커피에 대한 사람들의 관심도 또한 커지고 있는 추세이다. 이러한 추세 속에서 사람들의 입맛이 더욱 고급스러워지고 커피의 맛을 결정하는 커피 원두가 중요시 되고 있다. 하지만 현재는 불량원두를 사람이 직접 보고 검출을 하고 있는데, 이는 커피 원두에 대한 전문적 지식이 있는 사람만이 할 수가 있는 작업이다. 따라서 본 논문에서는 기계학습을 이용한 불량원두 검출 시스템을 제안한다. 이 시스템에서는 불량 원두의 종류 중 큰 비율을 차지하는 원두의 모양과 Insect Damage에 대한 불량 검출에 중점을 두었다. 기계학습의 방법으로 Convolutional Neural Network를 사용하였고, 원두의 모양을 검출할 신경망과 Insect Damage를 검출할 신경망 두 개로 구성되어 있다. Insect Damage에 대한 불량을 검출할 때에는 카메라의 노출시간을 길게 하여 원두의 어두운 구멍을 더 돋보이게 하여 데이터를 만들어 신경망을 구축하였다. 이 시스템의 개발로 인하여 사람이 직접 불량 원두를 검출하는 작업을 자동화 시스템으로 전환할 수 있는 시발점이 될 수 있을 것이고, 현재는 원두의 모양과 Insect Damage의 유무만을 중점으로 검출을 하고 있기 때문에, 추후에 다른 여러 가지의 불량에 대해 검출할 수 있는 연구가 필요하다.

Keywords