• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.036 seconds

Neural Network Modeling of Ion Energy Impact on Surface Roughness of SiN Thin Films (신경망을 이용한 SiN 박막 표면거칠기에의 이온에너지 영향 모델링)

  • Kim, Byung-Whan;Lee, Joo-Kong
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.159-164
    • /
    • 2010
  • Surface roughness of deposited or etched film strongly depends on ion bombardment. Relationships between ion bombardment variables and surface roughness are too complicated to model analytically. To overcome this, an empirical neural network model was constructed and applied to a deposition process of silicon nitride (SiN) films. The films were deposited by using a pulsed plasma enhanced chemical vapor deposition system in $SiH_4$-$NH_4$ plasma. Radio frequency source power and duty ratio were varied in the range of 200-800 W and 40-100%. A total of 20 experiments were conducted. A non-invasive ion energy analyzer was used to collect ion energy distribution. The diagnostic variables examined include high (or) low ion energy and high (or low) ion energy flux. Mean surface roughness was measured by using atomic force microscopy. A neural network model relating the diagnostic variables to the surface roughness was constructed and its prediction performance was optimized by using a genetic algorithm. The optimized model yielded an improved performance of about 58% over statistical regression model. The model revealed very interesting features useful for optimization of surface roughness. This includes a reduction in surface roughness either by an increase in ion energy flux at lower ion energy or by an increase in higher ion energy at lower ion energy flux.

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • hwang, suen ki;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate.s center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

Development of Estimation Model for Hysteresis of Friction Using Artificial Intelligent (인공 지능 알고리즘을 이용한 마찰의 히스테리시스 예측 모델 개발)

  • Choi, Jeong-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2913-2918
    • /
    • 2011
  • This paper proposed the friction model using Preisach algorithm with neural network based on experimental results. In order to apply the neural network algorithm, the back propagation update rule was used and the updated weighting factor of neural network was applied to distribute function of Preisach model. In order to implement the proposed algorithm, the LabView software was used to apply to the precision control of mechanical system. The evaluation of the proposed friction model was executed through experiments.

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

Application of Artificial Neural Network method for deformation analysis of shallow NATM tunnel due to excavation

  • Lee, Jae-Ho;Akutagawa, Shnichi;Moon, Hong-Duk;Han, Heui-Soo;Yoo, Ji-Hyeung;Kim, Kwang-Yeun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.43-51
    • /
    • 2008
  • Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). For rational management of tunnels from planning to construction and maintenance stages, prediction, control and monitoring of displacements of and around the tunnel have to be performed with high accuracy. Computational method tools, such as finite element method, have been and are indispensable tool for tunnel engineers for many years. It is, however, a commonly acknowledged fact that determination of input parameters, especially material properties exhibiting nonlinear stress-strain relationship, is not an easy task even for an experienced engineer. Use and application of the acquired tunnel information is important for prediction accuracy and improvement of tunnel behavior on construction. Artificial Neural Network (ANN) model is a form of artificial intelligence that attempts to mimic behavior of human brain and nervous system. The main objective of this paper is to perform the deformation analysis in NATM tunnel by means of numerical simulation and artificial neural network (ANN) with field database. Developed ANN model can achieve a high level of prediction accuracy.

  • PDF

Self Tunning PI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 자기동조 PI 제어기)

  • Nam, Su-Myeong;Lee, Hong-Gyun;Ko, Jae-Sub;Choi, Jung-Sik;Park, Gi-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1453-1455
    • /
    • 2005
  • This paper presents self tuning PI controller of IPMSM drive using neural network. Self tuning PI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

Optimization of Design Variables of a Train Suspension Using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.