• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.037 seconds

Controller Design of Two Wheeled Inverted Pendulum Type Mobile Robot Using Neural Network (신경회로망을 이용한 이륜 역진자형 이동로봇의 제어기 설계)

  • An, Tae-Hee;Kim, Yong-Baek;Kim, Young-Doo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.536-544
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum type robot is designed to have more stable balancing capability than conventional controllers. Traditional PID control structure is chosen for the two wheeled inverted pendulum type robot, and proper gains for the controller are obtained for specified user's weights using trial-and-error methods. Next a neural network is employed to generate PID controller gains for more stable control performance when the user's weight is arbitrarily selected. Through simulation studies we find that the designed controller using the neural network is superior to the conventional PID controller.

A study of hybrid neural network to improve performance of face recognition (얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2622-2627
    • /
    • 2010
  • The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.

Quantification Analysis Problem using Mean Field Theory in Neural Network (평균장 이론을 이용한 전량화분석 문제의 최적화)

  • Jo, Gwang-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.417-424
    • /
    • 1995
  • This paper describes MFT(Mean Field Theory) neural network with continuous with continuous variables is applied to quantification analysis problem. A quantification analysis problem, one of the important problems in statistics, is NP complete and arises in the optimal location of objects in the design space according to the given similarities only. This paper presents a MFT neural network with continuous variables for the quantification problem. Starting with reformulation of the quantification problem to the penalty problem, this paper propose a "one-variable stochastic simulated annealing(one-variable SSA)" based on the mean field approximation. This makes it possible to evaluate of the spin average faster than real value calculating in the MFT neural network with continuous variables. Consequently, some experimental results show the feasibility of this approach to overcome the difficulties to evaluate the spin average value expressed by the integral in such models.ch models.

  • PDF

Multiuser Detection Using Hopfield Neural Network Algorithm in Multi-rate CDMA Communications (멀티 레이트 CDMA환경에서의 홉필드 신경망 알고리즘을 이용한 다중 사용자 검출기법)

  • 주양익;김용석;고한석;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.188-195
    • /
    • 2002
  • In this paper, we consider efficient multiuser receiver structures using Hopfield neural network algorithm focused to construct a synchronous multi-rate code division multiple access (CDMA) system. Although the optimum receiver for multiuser detection can be realized attaining the best BER performance, it is too complex for practical implementation. Therefore, we propose near-optimal receivers of relatively low computationally complex multiuser detection structures for realizing multi-rate CDMA system and their performances are compared with conventional matched filter and other prominent multi-rate multiuser detectors, Computer simulations show that the Hopfield neural network based multiuser receiver achieves substantially better BER performance in Rayleigh fading environments.

License Plates Detection Using a Gaussian Windows (가우시안 창을 이용한 번호판 영역 검출)

  • Kang, Yong-Seok;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.780-785
    • /
    • 2012
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plates center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Prediction of rebound in shotcrete using deep bi-directional LSTM

  • Suzen, Ahmet A.;Cakiroglu, Melda A.
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • During the application of shotcrete, a part of the concrete bounces back after hitting to the surface, the reinforcement or previously sprayed concrete. This rebound material is definitely not added to the mixture and considered as waste. In this study, a deep neural network model was developed to predict the rebound material during shotcrete application. The factors affecting rebound and the datasets of these parameters were obtained from previous experiments. The Long Short-Term Memory (LSTM) architecture of the proposed deep neural network model was used in accordance with this data set. In the development of the proposed four-tier prediction model, the dataset was divided into 90% training and 10% test. The deep neural network was modeled with 11 dependents 1 independent data by determining the most appropriate hyper parameter values for prediction. Accuracy and error performance in success performance of LSTM model were evaluated over MSE and RMSE. A success of 93.2% was achieved at the end of training of the model and a success of 85.6% in the test. There was a difference of 7.6% between training and test. In the following stage, it is aimed to increase the success rate of the model by increasing the number of data in the data set with synthetic and experimental data. In addition, it is thought that prediction of the amount of rebound during dry-mix shotcrete application will provide economic gain as well as contributing to environmental protection.

Minimisation Technique for Seismic Noise Using a Neural Network (인공신경망을 이용한 탄성파 잡음제거)

  • Hwang Hak Soo;Lee Sang Kyu;Lee Tai Sup;Sung Nak Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.3
    • /
    • pp.83-87
    • /
    • 2000
  • The noise prediction filter using a local/remote reference was developed to obtain a high quality data from seismic surveys over the area where seismic transmission power is limited. The method used in the noise prediction filter is a 3-layer neural network whose algorithm is backpropagation. A NRF (Noise Reduction Factor) value of about 3.0 was obtained with appling training and test data to the trained noise prediction filter. However, the scaling technique generally used for minimizing EM noise from electric and electromagnetic data cannot reduce seismic noise, since the technique can allow only amplitude difference between two time series measured at the primary and reference sites.

  • PDF

Image-based Artificial Intelligence Deep Learning to Protect the Big Data from Malware (악성코드로부터 빅데이터를 보호하기 위한 이미지 기반의 인공지능 딥러닝 기법)

  • Kim, Hae Jung;Yoon, Eun Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.76-82
    • /
    • 2017
  • Malware, including ransomware to quickly detect, in this study, to provide an analysis method of malicious code through the image analysis that has been learned in the deep learning of artificial intelligence. First, to analyze the 2,400 malware data, and learning in artificial neural network Convolutional neural network and to image data. Extracts subgraphs to convert the graph of abstracted image, summarizes the set represent malware. The experimentally analyzed the malware is not how similar. Using deep learning of artificial intelligence by classifying malware and It shows the possibility of accurate malware detection.

Thread Distribution Method of GP-GPU for Accelerating Parallel Algorithms (병렬 알고리즘의 가속화를 위한 GP-GPU의 Thread할당 기법)

  • Lee, Kwan-Ho;Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.92-95
    • /
    • 2017
  • In this paper, we proposed a way to improve function of small scale GP-GPU. Instead of using superscalar which increase scheduling-complexity, we suggested the application of simple core to maximize GP-GPU performance. Our studies also demonstrated that simplified Stream Processor is one of the way to achieve functional improvement in GP-GPU. In addition, we found that developing of optimal thread-assigning method in Warp Scheduler for specific application improves functional performance of GP-GPU. For examination of GP-GPU functional performance, we suggested the thread-assigning way which coordinated with Deep-Learning system; a part of Neural Network. As a result, we found that functional index in algorithm of Neural Network was increased to 90%, 98% compared with Intel CPU and ARM cortex-A15 4 core respectively.