• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.034 seconds

On-line Identification of The Toxicological Substance in The Water System using Neural Network Technique (조류를 이용한 수계모니터링 시스템에서 뉴럴 네트워크에 의한 실시간 독성물질 판단)

  • Jung, Jonghyuk;Jung, Hakyu;Kwon, Wontae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Biological and chemical sensors are the two most frequently used sensors to monitor the water resource. Chemical sensor is very accurate to pick up the types and to measure the concentration of the chemical substance. Drawback is that it works for just one type of chemical substance. Therefore a lot of expensive monitoring system needs to be installed to determine the safeness of the water, which costs too much expense. Biological sensor, on the contrary, can judge the degree of pollution of the water with just one monitoring system. However, it is not easy to figure out the type of contaminant with a biological sensor. In this study, an endeavor is made to identify the toxicant in the water using the shape of the chlorophyll fluorescence induction curve (FIC) from a biological monitoring system. Wem-tox values are calculated from the amount of flourescence of contaminated and reference water. Curve fitting is executed to find the representative curve of the raw data of Wem-tox values. Then the curves are digitalized at the same interval to train the neural network model. Taguchi method is used to optimize the neural network model parameters. The optimized model shows a good capacity to figure out the toxicant from FIC.

The Fault Detection of an Air-Conditioning System by Using a Residual Input RBF Neural Network (잔차입력 RBF 신경망을 사용한 냉방기 고장검출 알고리즘)

  • Han, Do-Young;Ryoo, Byoung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.780-788
    • /
    • 2005
  • Two different types of algorithms were developed and applied to detect the partial faults of a multi-type air conditioning system. Partial faults include the compressor valve leakage, the refrigerant pipe partial blockage, the condenser fouling, and the evaporator fouling. The first algorithm was developed by using mathematical models and parity relations, and the second algorithm was developed by using mathematical models and a RBF neural network. Test results showed that the second algorithm was better than the first algorithm in detecting various partial faults of the system. Therefore, the algorithm developed by using mathematical models and a RBF neural network may be used for the detection of partial faults of an air-conditioning system.

Hybrid Neural Network Based BGA Solder Joint Inspection Using Digital Tomosynthesis (하이브리드 신경회로망을 이용한 디지털 단층 영상의 BGA 검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Hyung-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.246-254
    • /
    • 2001
  • In this paper, we described an approach to the automation of visual inspection of BGA solder joint defects of surface mounted components on printed circuit board by using neural network. Inherently, the BGA solder joints are located underneath its own package body, and this induces a difficulty of taking good image of the solder joints by using conventional imaging systems. To acquire the cross-sectional image of BGA sol-der joint, X-ray cross-sectional imaging method such as laminography and digital tomosynthesis has been cur-rently utilized. However, the cross-sectional image obtained by using laminography or DT methods, has inher-ent blurring effect and artifact. This problem has been a major obstacle to extract suitable features for classifi-cation. To solve this problem, a neural network based classification method is proposed int his paper. The per-formance of the proposed approach is tested on numerous samples of printed circuit boards and compared with that of human inspector. Experimental results reveal that the method provides satisfactory perform-ance and practical usefulness in BGA solder joint inspection.

  • PDF

Wine Quality Classification with Multilayer Perceptron

  • Agrawal, Garima;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • This paper is about wine quality classification with multilayer perceptron using the deep neural network. Wine complexity is an issue when predicting the quality. And the deep neural network is considered when using complex dataset. Wine Producers always aim high to get the highest possible quality. They are working on how to achieve the best results with minimum cost and efforts. Deep learning is the possible solution for them. It can help them to understand the pattern and predictions. Although there have been past researchers, which shows how artificial neural network or data mining can be used with different techniques, in this paper, rather not focusing on various techniques, we evaluate how a deep learning model predicts for the quality using two different activation functions. It will help wine producers to decide, how to lead their business with deep learning. Prediction performance could change tremendously with different models and techniques used. There are many factors, which, impact the quality of the wine. Therefore, it is a good idea to use best features for prediction. However, it could also be a good idea to test this dataset without separating these features. It means we use all features so that the system can consider all the feature. In the experiment, due to the limited data set and limited features provided, it was not possible for a system to choose the effective features.

LCD Defect Detection using Neural-network based on BEP (BEP기반의 신경회로망을 이용한 LCD 패널 결함 검출)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

Estimation of Concrete Strength Using Improved Probabilistic Neural Network Method

  • Kim Doo-Kie;Lee Jong-Jae;Chang Seong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1075-1084
    • /
    • 2005
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network(PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Improved probabilistic neural network was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment (DDA) algorithm. The conventional PNN and the PNN with DDA algorithm(IPNN) were applied to predict the compressive strength of concrete using actual test data of two concrete companies. IPNN showed better results than the conventional PNN in predicting the compressive strength of concrete.

Implementation of Image based Fire Detection System Using Convolution Neural Network (합성곱 신경망을 이용한 이미지 기반 화재 감지 시스템의 구현)

  • Bang, Sang-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.331-336
    • /
    • 2017
  • The need for early fire detection technology is increasing in order to prevent fire disasters. Sensor device detection for heat, smoke and fire is widely used to detect flame and smoke, but this system is limited by the factors of the sensor environment. To solve these problems, many image-based fire detection systems are being developed. In this paper, we implemented a system to detect fire and smoke from camera input images using a convolution neural network. Through the implemented system using the convolution neural network, a feature map is generated for the smoke image and the fire image, and learning for classifying the smoke and fire is performed on the generated feature map. Experimental results on various images show excellent effects for classifying smoke and fire.

The wavelet neural network using fuzzy concept for the nonlinear function learning approximation (비선형 함수 학습 근사화를 위한 퍼지 개념을 이용한 웨이브렛 신경망)

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.397-404
    • /
    • 2002
  • In this paper, it is proposed wavelet neural network using the fuzzy concept with the fuzzy and the multi-resolution analysis(MRA) of wavelet transform. Also, it wishes to improve any nonlinear function learning approximation using this system. Here, the fuzzy concept is used the bell type fuzzy membership function. And the composition of wavelet has a unit size. It is used the backpropagation algorithm for learning of wavelet neural network using the fuzzy concept. It is used the multi-resolution analysis of wavelet transform, the bell type fuzzy membership function and the backpropagation algorithm for learning. This structure is confirmed to be improved approximation performance than the conventional algorithms from one dimension and two dimensions function through simulation.

Fault diagnostic system for rotating machine based on Wavelet packet transform and Elman neural network

  • Youk, Yui-su;Zhang, Cong-Yi;Kim, Sung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 2009
  • An efficient fault diagnosis system is needed for industry because it can optimize the resources management and improve the performance of the system. In this study, a fault diagnostic system is proposed for rotating machine using wavelet packet transform (WPT) and elman neural network (ENN) techniques. In most fault diagnosis for mechanical systems, WPT is a well-known signal processing technique for fault detection and identification. In previous work, WPT can improve the continuous wavelet transform (CWT) used over a longer computing time and huge operand. It can also solve the frequency-band disagreement by discrete wavelet transform (DWT) only breaking up the approximation version. In the experimental work, the extracted features from the WPT are used as inputs in an Elman neural network. The results show that the scheme can reliably diagnose four different conditions and can be considered as an improvement of previous works in this field.

Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms (두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어)

  • Noh, Jin-Seok;Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.652-658
    • /
    • 2010
  • This paper presents the implementation and control of a two wheeled mobile robot(TWMR) based on a balancing mechanism. The TWMR is a mobile inverted pendulum structure that combines an inverted pendulum system and a mobile robot system with two arms instead of a rod. To improve robustness due to disturbances, the radial basis function (RBF) network is used to control an angle and a position at the same time. The reference compensation technique(RCT) is used as a neural control method. Experimental studies are conducted to demonstrate performance of neural network controllers. The robot are implemented with the remote control capability.