• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.045 seconds

Acute Leukemia Classification Using Sequential Neural Network Classifier in Clinical Decision Support System (임상적 의사결정지원시스템에서 순차신경망 분류기를 이용한 급성백혈병 분류기법)

  • Lim, Seon-Ja;Vincent, Ivan;Kwon, Ki-Ryong;Yun, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.174-185
    • /
    • 2020
  • Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only cover the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • 이규봉;정연숙;박호식;박동희;남기환;한준희;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.797-800
    • /
    • 2003
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plates center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate revered by the learning pattern, the effort of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Implementation of Balancing Control System for Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 밸런싱 제어시스템 구현)

  • An, Tae-Hee;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.432-439
    • /
    • 2012
  • In this paper, instead of the conventional PD controller for balancing control of two wheeled inverted pendulum robots, an improved PD controller using the neural network is proposed and implemented for performance verification. First, a two wheeled inverted pendulum robot system is constructed for experiment. Next proper gains of the conventional PD controller according to users' weights are obtained for balancing the robot by use of the trial and error method. The PD gains based on the trial and error method are generalized through the neural network. Experiment results show that the PD controller based on the neural network has better performance than the conventional PD controller.

Stability Analysis and Effect of CES on ANN Based AGC for Frequency Excursion

  • Raja, J.;Rajan, C.Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.552-560
    • /
    • 2010
  • This paper presents an application of layered Artificial Neural Network controller to study load frequency control problem in power system. The objective of control scheme guarantees that steady state error of frequencies and inadvertent interchange of tie-lines are maintained in a given tolerance limitation. The proposed controller has been designed for a two-area interconnected power system. Only one artificial neural network controller (ANN), which controls the inputs of each area in the power system together, is considered. In this study, back propagation-through time algorithm is used as neural network learning rule. The performance of the power system is simulated by using conventional integral controller and ANN controller, separately. For the first time comparative study has been carried out between SMES and CES unit, all of the areas are included with SMES and CES unit separately. By comparing the results for both cases, the performance of ANN controller with CES unit is found to be better than conventional controllers with SMES, CES and ANN with SMES.

Safety Improvement of an Automatic Door System Using a Disturbance Observer and Neural Network (외란관측기와 신경 회로망을 이용한 자동문 시스템의 안전성 개선)

  • Yoo, Young-Dong;Lee, Kyo-Beum;Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2010
  • This paper proposes an automatic door system which improves the safety of conventional automatic door systems by complementing the external safety sensors. Disturbance observer using the model of automatic door system and neural network is designed. The proposed algorithm compares the observed disturbance with the output of neural network. Experimental results are presented to illustrate the feasibility of the proposed control strategy. The proposed strategy is expected to improve the safety of an automatic door system.

Efficient Decision Making Support System by Rough-Neural Network and $\chi$2 (러프-신경망과 $\chi$2 검정에 의한 효율적인 의사결정지원 시스템)

  • Jeong, Hwan-Muk;Pi, Su-Yeong;Choe, Gyeong-Ok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2106-2112
    • /
    • 1999
  • In decision-making, information is the thing manufactured as the useful type for decision -making. We can improve the efficiency of decision-making by elimination of unnecessary information. Rough set is the theory that can classify and reduce the unnecessary. But the reduction process of rough set becomes more complex according to the number of attribute and tuple. After eliminating of the dispensable attributes using $\chi$2 and rough set, the indispensable attributes are used for the units of input layers in neural network. This rough-neural network can support more correct decision-making of neural network.

  • PDF

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam Su-Myung;Choi Jung-Sik;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using learning mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_{d}$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using LM-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using LM-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

Modeling of silicon carbide etching in a $NF_3/CH_4$ plasma using neural network ($NF_3/CH_4$ 플라즈마를 이용한 실리콘 카바이드 식각공정의 신경망 모델링)

  • Kim, Byung-Whan;Lee, Suk-Yong;Lee, Byung-Teak;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.58-62
    • /
    • 2003
  • Silicon carbide (SiC) was etched in a $NF_3/CH_4$ inductively coupled plasma. The etch process was modeled by using a neural network called generalized regression neural network (GRNN). For modeling, the process was characterized by a $2^4$ full factorial experiment with one center point. To test model appropriateness, additional test data of 16 experiments were conducted. Particularly, the GRNN predictive capability was drastically improved by a genetic algorithm (GA). This was demonstrated by an improvement of more than 80% compared to a conventionally obtained model. Predicted model behaviors were highly consistent with actual measurements. From the optimized model, several plots were generated to examine etch rate variation under various plasma conditions. Unlike the typical behavior, the etch rate variation was quite different depending on the bias power Under lower bias powers, the source power effect was strongly dependent on induced dc bias. The etch rate was strongly correated to the do bias induced by the gas ratio. Particularly, the etch rate variation with the bias power at different gas ratio seemed to be limited by the etchant supply.

  • PDF

Development of a Control Strategy for a Multifunctional Myoelectric Prosthesis

  • Kim Seung-Jae;Choi Hwasoon;Youm Youngil
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.243-249
    • /
    • 2005
  • The number of people who have lost limbs due to amputation has increased due to various accidents and diseases. Numerous attempts have been made to provide these people with prosthetic devices. These devices are often controlled using myoelectric signals. Although the success of fitting myoelectric signals (EMG) for single device control is apparent, extension of this control to more than one device has been difficult. The lack of success can be attributed to inadequate multifunctional control strategies. Therefore, the objective of this study was to develop multifunctional myoelectric control strategies that can generate a number of output control signals. We demonstrated the feasibility of a neural network classification control method that could generate 12 functions using three EMG channels. The results of evaluating this control strategy suggested that the neural network pattern classification method could be a potential control method to support reliability and convenience in operation. In order to make this artificial neural network control technique a successful control scheme for each amputee who may have different conditions, more investigation of a careful selection of the number of EMG channels, pre-determined contractile motions, and feature values that are estimated from the EMG signals is needed.

WEED DETECTION BY MACHINE VISION AND ARTIFICIAL NEURAL NETWORK

  • S. I. Cho;Lee, D. S.;J. Y. Jeong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.270-278
    • /
    • 2000
  • A machine vision system using charge coupled device(CCD) camera for the weed detection in a radish farm was developed. Shape features were analyzed with the binary images obtained from color images of radish and weeds. Aspect, Elongation and PTB were selected as significant variables for discriminant models using the STEPDISC option. The selected variables were used in the DISCRIM procedure to compute a discriminant function for classifying images into one of the two classes. Using discriminant analysis, the successful recognition rate was 92% for radish and 98% for weeds. To recognize radish and weeds more effectively than the discriminant analysis, an artificial neural network(ANN) was used. The developed ANN model distinguished the radish from the weeds with 100%. The performance of ANNs was improved to prevent overfitting and to generalize well using a regularization method. The successful recognition rate in the farms was 93.3% for radish and 93.8% for weeds. As a whole, the machine vision system using CCD camera with the artificial neural network was useful to detect weeds in the radish farms.

  • PDF