• 제목/요약/키워드: neural network.

Search Result 11,770, Processing Time 0.041 seconds

The Effect of Seasonal Input on Predicting Groundwater Level Using Artificial Neural Network (인공신경망을 이용한 지하수위 예측과 계절효과 반영을 위한 입력치의 영향)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.125-133
    • /
    • 2018
  • Artificial neural network (ANN) is a powerful model to predict time series data and have been frequently adopted to predict groundwater level (GWL). Many researchers have also tried to improve the performance of ANN prediction for GWL in many ways. Dummies are usually used in ANN as input to reflect the seasonal effect on predicted results, which is necessary for improving the predicting performance of ANN. In this study, the effect of Dummy on the prediction performance was analyzed qualitatively and quantitatively using several graphical methods, correlation coefficient and performance index. It was observed that results predicted using dummies for ANN model indicated worse performance than those without dummies.

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate (적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어)

  • Lee, Bo-Hee;Lee, Taek-Seung;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

Predicting strength of SCC using artificial neural network and multivariable regression analysis

  • Saha, Prasenjit;Prasad, M.L.V.;Kumar, P. Rathish
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

Threshold Neural Network Model for VBR Video Trace (가변적 비디오 트랙을 위한 임계형 신경망 모델)

  • Jang, Bong-Seog
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.34-43
    • /
    • 2006
  • This paper shows modeling methods for VBR video trace. It is well known that VBR video trace is characterized as longterm correlated and highly intermittent burst data. To analyze this, we attempt to model it using neural network with auxiliary linear structures derived from residual threshold. For testing purpose, we generate VBR video trace from chaotic nonlinear function combined with the geometric random noise. The modeling result of the generated data shows that the attempted method represents more accurately than the traditional neural network. However, we also found that combining hRU to the attempted modeling method can yield a closer agreement to statistical features of the generated data than the attempted modeling method alone.

  • PDF

A Content-Based Image Classification using Neural Network (신경망을 이용한 내용기반 영상 분류)

  • 이재원;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.505-514
    • /
    • 2002
  • In this Paper, we propose a method of content-based image classification using neural network. The images for classification ate object images that can be divided into foreground and background. To deal with the object images efficiently, object region is extracted with a region segmentation technique in the preprocessing step. Features for the classification are texture and shape features extracted from wavelet transformed image. The neural network classifier is constructed with the extracted features and the back-propagation learning algorithm. Among the various texture features, the diagonal moment was more effective. A test with 300 training data and 300 test data composed of 10 images from each of 30 classes shows correct classification rates of 72.3% and 67%, respectively.

  • PDF

Classification of Aroma Using Neural Network (신경회로망을 이용한 아로마 분류)

  • Kim, Yong Soo;Kim, Han-Soo;Kim, Sun-Tae;Lim, Mi-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.431-435
    • /
    • 2013
  • Aroma has been used for healing for a long time. The healing effects depend on aroma used. We made gas sensor array system to classify aromas systematically. We used outputs of sensors as the input to IAFC neural network. Results show that the neural network successfully classified jasmine, orange, roman chamomile, and lavender into 4 classes, and classified without any error.

Recognition of Individual Holstein Cattle by Imaging Body Patterns

  • Kim, Hyeon T.;Choi, Hong L.;Lee, Dae W.;Yoon, Yong C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1194-1198
    • /
    • 2005
  • A computer vision system was designed and validated to recognize an individual Holstein cattle by processing images of their body patterns. This system involves image capture, image pre-processing, algorithm processing, and an artificial neural network recognition algorithm. Optimum management of individuals is one of the most important factors in keeping cattle healthy and productive. In this study, an image-processing system was used to recognize individual Holstein cattle by identifying the body-pattern images captured by a charge-coupled device (CCD). A recognition system was developed and applied to acquire images of 49 cattles. The pixel values of the body images were transformed into input data comprising binary signals for the neural network. Images of the 49 cattle were analyzed to learn input layer elements, and ten cattles were used to verify the output layer elements in the neural network by using an individual recognition program. The system proved to be reliable for the individual recognition of cattles in natural light.