• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.046 seconds

A Study on EMG Pattern Recognition using Time Delayed Counter-Propagation Neural Network (TDCPN을 이용한 EMG 신호의 패턴 인식에 관한 연구)

  • Jung, In-Kil;Kwon, Jang-Woo;Jang, Young-Gun;Min, Hong-Ki;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.165-168
    • /
    • 1994
  • We proposed a new model of neural network, called Time Delay Counter-Propagation Neural network (TDCPN). This model is combined properly by the merits of Time Delay Neural Network (TDNN) structure and those of Counter - Propagation Neural network (CPN) learning rule, so that increase recognition rate but decrease total teaming time. And we use this model to simulate classification of EMG signals, and compare the recognition rate and teaming time with those of another neural network model. As a result of simulation, the proposed model is proved to be very effective.

  • PDF

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network (웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계)

  • Seo, Kyoung-Cheol;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

A Study on the Predict of Residual Stress Using a Neural Network (신경회로망을 이용한 용접잔류응력 예측에 관한 연구)

  • 김일수;이연신;박창언;정영재;안영호
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.251-255
    • /
    • 2000
  • Recently, the improvement of computer capacities and artificial intelligence ware caused to employ for prediction of residual stresses and strength evaluation. There are a lot of researches regarding the measurement and prediction of residual stresses for weldment using a neural network in the advanced countries, but in our country, a neural network as a technical part, has only been used on the possibilities of employment for welding area. Furthermore, the relationship between residual stress and process parameters using a neural network was wholly lacking. Therefore development of a new technical method for the optimized process parameters on the reduction of residual stress and applyment of real-time production line should be developed. The objectives of this paper is to measure the residual stress of butt welded specimen using strain gage sectioning method and to apply them to a neural network for prediction of residual stresses on a given process parameter. Also, the assessment of the developed system using a neural network was carried out

  • PDF

Position Tracking Control of an Autonomous Helicopter by an LQR with Neural Network Compensation (자율 주행 헬리콥터의 위치 추종 제어를 위한 LQR 제어 및 신경회로망 보상 방식)

  • ;Om, Il-Yong;Suk, Jin-Young;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.930-935
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Combining an LQR method and a proportional control forms a simple PD control. Since LQR control gains are set for the velocity control of the helicopter, a position tracking error occurs. To minimize a position tracking error, neural network is introduced. Specially, in the frame of the reference compensation technique for teaming neural network compensator, a position tracking error of an autonomous helicopter can be compensated by neural network installed in the remotely located ground station. Considering time delay between an auto-helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network performs better than that of LQR itself.

Position Tracking Control of a Small Autonomous Helicopter by an LQR with Neural Network Compensation

  • Eom, Il-Yong;Jung, Se-Ul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1008-1013
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Velocity is controlled by using an optimal state controller LQR. A position control loop is added to form a PD controller. To minimize a position tracking error, neural network is introduced. The reference compensation technique as a neural network control structure is used, and a position tracking error of an autonomous helicopter is compensated by neural network installed in the remotely located ground station. Considering time delays between an autonomous helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network compensation performs better than that of the LQR itself.

  • PDF

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

The neural network controller design with fuzzy-neuraon and its application to a ball and beam (볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계)

  • 신권석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil (심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용)

  • Kim, Young-Sang;Jeong, Hyun-Chel;Huh, Jung-Won;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

Estimating a Consolidation Behavior of Clay Using Artificial Neural Network (인공신경망을 이용한 압밀거동 예측)

  • Park, Hyung-Gyu;Kang, Myung-Chan;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.673-680
    • /
    • 2000
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a consolidation behavior of clay from soil parameter, site investigation data and the first settlement curve is proposed. The training and testing of the network were based on a database of 63 settlement curve from two different sites. Five different network models were used to study the ability of the neural network to predict the desired output to increasing degree of accuracy. The study showed that the neural network model predicted a consolidation behavior of clay reasonably well.

  • PDF