• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.032 seconds

Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network (RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석)

  • Baek, Seung Hyun;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking (구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계)

  • Park Chongkug;Kim Sangwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

An Neural Network Direct Controller for Nonlinear Systems

  • Nam Kee Hwan;Bae Cheo Soo;Cho Hyeon Seob;Ra Sang Dong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.491-493
    • /
    • 2004
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF

Time-Varying Two-Phase Optimization and its Application to neural Network Learning (시변 2상 최적화 및 이의 신경회로망 학습에의 응용)

  • Myeong, Hyeon;Kim, Jong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

Artifical Neural Network for In-Vitro Thrombosis Detection of Mechanical Valve

  • Lee, Hyuk-Soo;Lee, Sang-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.762-766
    • /
    • 1998
  • Mechanical valve is one of the most widely used implantable artificial organs, Since its failure (mechanical failures and thrombosis to name two representative example) means the death of patient, its reliability is very important and early noninvasive detection is essential requirement . This paper will explain the method to detect the thrombosis formation by spectral analysis and neural network. In order quantitatively to distinguish peak of a normal valve from that of a thrombotic valve, a 3 layer backpropagation neural network, which contains 7,000 input nodes, 20 hidden layer and 1output , was employed. The trained neural network can distinguish normal and thrombotic valve with a probability that is higher than 90% . In conclusion, the acoustical spectrum analysis coupled with a neural network algorithm lent itself to the noninvasive monitoring of implanted mechanical valves. This method will be applied to be applied to the performance evaluation of other implantable rtificial organs.

  • PDF

A Study on Prediction of Optimized Penetration Using the Neural Network and Empirical models (신경회로망과 수학적 방정식을 이용한 최적의 용입깊이 예측에 관한 연구)

  • 전광석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.70-75
    • /
    • 1999
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor the information about weld characteristics and process paramters as well as modification of those parameters to hold weld quality within the acceptable limits. Typical characteristics are the bead geometry composition micrrostructure appearance and process parameters which govern the quality of the final weld. The main objectives of this paper are to realize the mapping characteristicso f penetration through the learning. After learning the neural network can predict the pene-traition desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) were chosen from an error analysis. partial-penetration single-pass bead-on-plate welds were fabricated in 12mm mild steel plates in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the penetration with reasonable accuracy and gurarantee the uniform weld quality.

  • PDF

Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment (미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

A Design of Fuzzy-Neural Network Algorithm Controller for Path-Tracking in Wheeled Mobile Robot (구륜 이동 로봇의 경로추적을 위한 퍼지-신경망을 이용한 제어기 설계)

  • Kim, Je-Hyeon;Kim, Sang-Won;Lee, Yong-Hyeon;Park, Jong-Guk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.255-258
    • /
    • 2003
  • It is hard to centrol the wheeled mobile robot because of uncertainty of modeling, non-holonomic constraint and so on. To solve the problems, we design the controller of wheeled mobile robot based on fuzzy-neural network algorithm. In this paper, we should research the problem of classical controller for path-tracking algorithm and design of Fuzzy-Neural Network algorithm controller. Classical controller acquired different control value according to change of initial position and direction. In this control value having very difficult and having acquired a lot of trial and error Fuzzy is implemented to adaptive adjust control value by error and change of error and neural network is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-neural network controller is effective.

  • PDF

Control Method of an Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;임중규;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.487-492
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method is composed of neural network of state space model type, performs for a unknown nonlinear system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

Direct Controller for Nonlinear System Using a Neural Network

  • Bae, Cheol-Soo;Park, Young-Cheol;Nam, Kee-Hwan;Kang, Yong-Seok;Kim, Tae-Woo;Hwang, Suen-Ki;Kim, Hyon-Yul;Kim, Moon-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.