• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.036 seconds

Application of Artificial Neural Networks to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

  • Oh, Sang Hoon;Kim, Kyungmin;Harry, Ian W.;Hodge, Kari A.;Kim, Young-Min;Lee, Chang-Hwan;Lee, Hyun Kyu;Oh, John J.;Son, Edwin J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We apply a machine learning algorithm, artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. We also evaluate the gravitational-wave data within a few seconds of the selected short gamma-ray bursts' event times using the trained networks and obtain the false alarm probability. We suggest that artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  • PDF

Recognition of Korean Phonemes in the Spoken Isolated Words Using Distributed Neural Network (분산 신경망을 이용한 고립 단어 음성에 나타난 음소 인식)

  • Kim, Seon-Il;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.54-61
    • /
    • 1995
  • In this paper, we implemented distributed neural network that recognizes phonemes by frame unit for the 30 Korean proverbs sentences consist of 106 isolated words. The features of speech were chosen as PLP cepstrums, energy and zero crossings, where we get those being used as inputs to the distributed neural networks in wide area for a frame to get the good temperal characteristics. A young man of twenties has produced 30 proverbs 5 times. The learning of neural network uses 4 sets of them. 1 set being unused remains for test. There exists silence between words for the easy discrimination. The ratio of frame recognition in large grouping neural network is $95.3\%$ when 4 sets were used for the learning.

  • PDF

Development of Algorithm for Prediction of Bead Height on GMA Welding (GMA 용접의 최적 비드 높이 예측 알고리즘 개발)

  • 김인수;박창언;김일수;손준식;안영호;김동규;오영생
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.40-46
    • /
    • 1999
  • The sensors employed in the robotic are welding system must detect the changes in weld characteristics and produce the output that is in some way related to the change being detected. Such adaptive systems, which synchronise the robot arm and eyes using a primitive brain will form the basis for the development of robotic GMA(Gas Metal Arc) welding which increasingly higher levels of artificial intelligence. The objective of this paper is to realize the mapping characteristics of bead height through learning. After learning, the neural estimation can estimate the bead height desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Rotor Resistance Estimation of Induction Motor by ANN (ANN에 의한 유도전동기의 회전자 저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-34
    • /
    • 2006
  • This paper proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

A Comparison of Construction Cost Estimation Using Multiple Regression Analysis and Neural Network in Elementary School Project

  • Cho, Hong-Gyu;Kim, Kyong-Gon;Kim, Jang-Young;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.66-74
    • /
    • 2013
  • In the early stages of a construction project, the most important thing is to predict construction costs in a rational way. For this reason, many studies have been performed on the estimation of construction costs for apartment housing and office buildings at early stage using artificial intelligence, statistics, and the like. In this study, cost data held by a provincial Office of Education on elementary schools constructed from 2004 to 2007 were used to compare the multiple regression model with an artificial neural network model. A total of 96 historical data were classified into 76 historical data for constructing models and 20 historical data for comparing the constructed regression model with the artificial neural network model. The results of an analysis of predicted construction costs were that the error rate of the artificial neural network model is lower than that of the multiple regression model.

A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network (진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Chun, Jong-Min;Jeon, Hyang-Sig;Park, Young-Kiu;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

Application of Neural Network to the Estimation of Curvature Deformation of Steel Plates in Line Heating (인공신경망을 적용한 선상가열시 강판의 곡률변형 추정)

  • Jeon, Byung-Jae;Kim, Hyun-Jun;Yang, Park-Dal-Chi
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.24-30
    • /
    • 2006
  • Different methods exist for the estimation of thermaldeformation of plates in the line heating process. These are based on the assumption of residual strains in the heat-affected zone, known as the method of inherent strains, or simulated relations between heating conditions and residual deformations. The purpose of this paper is to develop a simulator of thermal deformation in the line heating, using the artificial neural network. Curvature deformations for the plate-forming are investigated, which can be used as a prime deformation parameter in the process. The curvature of plates are calculated using the approximation of plate surface by NURBS. Line heating experiments for 11 specimens of different thickness and heating conditions were performed. Two neural networks predicting the maximum temperature and curvature deformations at the heating line are studied. It was concluded that the thermal deformations predicted by the neural network can be used in a line heating simulator, which is considered an attractive and practical alternative to the existing methods.

VAD By Neural Network Under Wireless Communication Systems (Neural Network을 이용한 무선 통신시스템에서의 VAD)

  • Lee Hosun;Kim Sukyung;Park Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1262-1267
    • /
    • 2005
  • Elliptical basis function (EBF) neural network works stably under high-level background noise environment and makes the nonlinear processing possible. It can be adapted real time VAD with simple design. This paper introduces VAD implementation using EBF and the experimental results show that EBF VAD outperforms G729 Annex B and RBF neural networks. The best error rates achieved by the EBF networks were improved more than $70\%$ in speech and $50\%$ in silence while that achieved by G.729 Annex B and RBF networks respectively.

Design of PID adaptive control system combining Genetic Algorithms and Neural Network (유전알고리즘과 신경망을 결합한 PID 적응제어 시스템의 설계)

  • 조용갑;박재형;박윤명;서현재;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • This Paper is about how to deside the best parameter of PID controller, using Genetic Algorithms and Neural Networks. Control by Genetic Algorithms, which is off-line pass, has weakness for disturbance. So we want to improve like followings by adding Neural Network to controller and putting it on line. First we find PID parameter by Genetic Algorithms in forward pass of Neural Network and set the best output condition according to the increasing number of generation. Second, we explain the adaptability for disturbance with simulation by correcting parameter by backpropagation learning rule by using the learning ability of Neural Network.

  • PDF