• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.036 seconds

Robust Speed Control of DC Servo Motor Using PID-Neural Network Hybrid Controller (PID-신경망 복합형 제어기를 이용한 직류 서보전동기의 강인한 속도제어)

  • 박왈서;전정채
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simula tion.a tion.

  • PDF

Comparison of Alternative knowledge Acquisition Methods for Allergic Rhinitis

  • Chae, Young-Moon;Chung, Seung-Kyu;Suh, Jae-Gwon;Ho, Seung-Hee;Park, In-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).

  • PDF

Design and Application of an Adaptive Neural Network to Dynamic Positioning Control of Ship

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.285-290
    • /
    • 2006
  • This paper presents an adaptive neural network based controller and its application to Dynamic Positioning (DP) control system of ship. The proposed neural network based controller is developed for station-keeping and low-speed maneuvering control of ship. At first, the DP system configuration is described. And then, to validate the proposed DP system, computer simulations of station-keeping and low-speed maneuvering performance of a multi-purpose supply ship are presented under the influence of measurement noise, external disturbances such as sea current, wave, and wind. The simulations have shown the feasibility of the DP system in various maneuvering situations.

  • PDF

A study on pattern recognition using DCT and neural network (DCT와 신경회로망을 이용한 패턴인식에 관한 연구)

  • 이명길;이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.481-492
    • /
    • 1997
  • This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.

  • PDF

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

Neural network PI parameter Self-tuning Simulator for Permanent Magnet Synchronous Motor operation (영구자석 동기전동기 구동을 위한 신경회로망 PI 파라미터 자기 동조 시뮬레이터)

  • Bae, Eun-Kyeong;Kwon, Jung-Dong;Jeon, Kee-Young;Park, Choon-Woo;Oh, Bong-Hwan;Jeong, Choon-Byeong;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.394-396
    • /
    • 2007
  • In this paper proposed to neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of PMSM. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment, Built up interface has it's own purpose that even the user who don't have the accurate knowledge of Neural network can embody operation characteristic rapidly and easily.

  • PDF

Visual Servoing of Robot Manipulators using the Neural Network with Optimal structure (최적구조의 신경회로망을 이용한 로붓 매니퓰레이터의 비주얼 서보잉)

  • Kim, Dae-Joon;Lee, Dong-Wook;Chun, Hyo-Byong;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1269-1271
    • /
    • 1996
  • This paper presents a visual servoing combined by evolutionary algorithms and neural network for a robotic manipulators to control position and orientation of the end-effector. Using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we generate the control input to agree the target image, to realize the visual servoing. The validity and effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

A SMP Forecasting Method Based on Artificial Neural Network Using Time and Day Information (시간축 및 요일축 정보의 조합을 이용한 신경회로망 기반의 평일 계통한계가격 예측)

  • Lee, Jeong-Kyu;Kim, Min-Soo;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This paper resents an application of an Artificial Neural Network(ANN) technique to forecast the short-term system marginal price(SMP). The forecasting of SMP is a very important factor in an electricity market for the optimal biddings of market participants as well as for the market stabilization of regulatory bodies. The proposed neural network scheme is composed of three layers. In this process, input data are set up to reflect market conditions. And the $\lambda$ that is the coefficient of activation function is modified in order to give a proper signal to each neuron and improve the adaptability for a neural network. The reposed techniques are trained validated and tested with the historical real-world data from korea Power Exchange(KPX).

  • PDF

Modeling of Ozone Prediction System using Polynomial Neural Network (다항식 신경회로망에 의한 오존농도 예측모델)

  • Kim, T.H.;Kim, S.S.;Lee, J.B.;Kim, Y.K.;Kim, S.D.;Kim, I.T.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2863-2865
    • /
    • 1999
  • In this paper we present the modeling of ozone prediction system using polynomial neural network. The Polynomial Neural Network is a useful tool for data learning, nonlinear function estimation and prediction of dynamic system. The mechanism of ozone concentration is highly complex, nonlinear, nonstationary. The purposed method shows that the prediction to the ozone concentration based upon a polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation.

  • PDF

Implementation of Stable Adaptive Neural Networks for Feedback Linearization (피이드백 선형화를 위한 안정한 적응 신경회로망 구현)

  • Kim, Dong-Hun;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.58-61
    • /
    • 1996
  • For a class of single-input single-output continuous-time nonlinear systems, a multilayer neural network-based controller that feedback-linearizes the system is presented. Control action is used to achieve tracking performance for a state-feedback linearizable but unknown nonlinear system. The multilayer neural network(NN) is used to approximate nonlinear continuous function to any desired degree of accuracy. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. It is shown that all the signals in the closed-loop system are uniformly bounded. Initialization of the network weights is straightforward.

  • PDF