• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Linear System Identification Using Multi-layer Neural Network (다층 신경회로망을 이용한 선형시스템의 식별)

  • 조규상;김경기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.130-138
    • /
    • 1995
  • In this paper, a Novel Approach is Proposed which Identifies linear system Parameters Using a multilayer feedforward neural network trained with backpropagation algorithm. The parameters of linear system can be represented by x9t)/x(t) and x(t)/u(t). Thud, its parameters can be represented in terms of the derivative of output with respect to input of parameters can be represented in terms of the derivative of output with respect to input of trained neural network which is a function of weights and output of neurons. Mathematical representation of the proposed approach is derived, and its validity is shown by simulation results on 2-layer and 3-layer neural network.

  • PDF

Classification of Analog Gauge using Convolutional Neural Network (Convolutional Neural Network을 활용한 아날로그 게이지 분류)

  • Kwak, Young-Tae;Ryu, Jin-Kyu;Kim, Ga-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.275-277
    • /
    • 2017
  • 사물인터넷(Internet of things)의 발전과 함께 스마트 팩토리에 대한 관심이 증대되고 있다. 제조의 전 과정에서 발생하는 데이터를 실시간으로 수집하고 관리를 자동화하는 것이 스마트 팩토리의 목적이다. 그러나 공장에서는 현재까지도 많이 사용되는 아날로그 게이지를 관리하는 일은 사람의 노동력을 필요로 한다. 또한 아날로그 게이지는 쓰임새에 따라 모양과 형태가 매우 다양하다. 본 논문에서는 아날로그 게이지의 형태에 따라 분류하는 방법에 대해 제안한다. 제안하는 방법은 학습하기 위해 필요한 게이지 영상 데이터를 수집하고 나서 각 분류에 속하는 이미지 데이터를 CNN(Convolutional Neural Network) 딥러닝 기법으로 학습시킨 후, 각 분류에 해당하는 특징 정보를 추출하고 아날로그 게이지의 형태를 인식하는 방법을 제안한다.

  • PDF

Monotoring Secheme of Laser Welding Interior Defects Using Neural Network (신경회로망을 이용한 레이저 용접 내부결함 모니터링 방법)

  • 손중수;이경돈;박상봉
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.19-31
    • /
    • 1999
  • This paper introduces the monitoring scheme of laser welding quality using neural network. The developed monitoring scheme detects light signal emitting from plasma formed above the weld pool with optic sensor and DSP-based signal processor, and analyzes to give a guidance about the weld quality. It can automatically detect defects of laser weld and further give an information about what kind of defects it is, specially partial penetration and porosity among the interior defects. Those could be detected only by naked eyes or X-ray after welding, which needs more processes and costs in mass production. The monitoring scheme extracts four feature vectors from signal processing results of optical measuring data. In order to classify pattern for extracted feature vectors and to decide defects, it uses single-layer neural network with perceptron learning. The monitoring result using only the first feature vector shows confidence rate in recognition of 90%($\pm$5) and decides whether normal status or defects status in real time.

  • PDF

A Study on Recognition of Friction Condition for Hydraulic Driving Members using Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Kim, Dong-Ho;Kang, In-Hyuk
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • It can be effective on failure diagnosis of oil-lubricated tribological system to analyze operating conditions with morphological characteristics of wear debris in a lubricated machine. And it can be recognized that results are processed threshold images of wear debris. But it is needed to analyse and identify a morphology of wear debris in order to predict and estimate a operating condition of the lubricated machine. If the morphological characteristics of wear debris are identified by the computer image analysis and the neural network, it is possible to recognize the friction condition. In this study, wear debris in the lubricating oil are extracted from membrane filter (0.45 ${\mu}m$) and the quantitative value fur shape parameters of wear debris was calculated through the computer image processing. Four shape parameters were investigated and friction condition was recognized very well by the neural network.

Prediction of the Bead Width Using an Artificial Neural Network (신경회로망을 이용한 비드폭 예측)

  • 김일수;손준식;박창언;하용훈;성백섭
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor information about weld characteristics and process parameters as well; as t modify those parameters to hold weld. The objectives of this paper are to realize the mapping characteristics of bead width through the neural network and multiple regression method as well as to select the most accurate model in order to control the weld quality(bead width0. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

  • PDF

Comparing Accuracy of Imputation Methods for Incomplete Categorical Data

  • Shin, Hyung-Won;Sohn, So-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.237-242
    • /
    • 2003
  • Various kinds of estimation methods have been developed for imputation of categorical missing data. They include modal category method, logistic regression, and association rule. In this study, we propose two imputation methods (neural network fusion and voting fusion) that combine the results of individual imputation methods. A Monte-Carlo simulation is used to compare the performance of these methods. Five factors used to simulate the missing data are (1) true model for the data, (2) data size, (3) noise size (4) percentage of missing data, and (5) missing pattern. Overall, neural network fusion performed the best while voting fusion is better than the individual imputation methods, although it was inferior to the neural network fusion. Result of an additional real data analysis confirms the simulation result.

  • PDF

A Study on Defect Diagnosis of Rotating Machinery Using Neural Network (신경회로망을 이용한 회전기계의 고장진단에 관한 연구)

  • Choe, Won-Ho;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This paper describes an application of artificial neural network to diagnose the defects of rotating machiner. Induction motor was used to the object of defect diagnosis. For defect diagnosis, the frequency spectrum of vibration was utilized. Learning method of applied neural network was back propagation. Neural network has following advantage; Once it has been learned, inference time is very short and it can provide a reasonable conclusion regardless of insufficient input data. So, this defect diagnosis system can be used superiorly to rule based expert system as quality inspection of rotating machinery in the shop.

  • PDF

Experimental Evaluation of Neural Network Based Controllers for Tracking the Tip Position of Flexible-Link (신경회로망을 이용한 유연한 관절의 선단위치 tracking 제어기에 관한 실험적 평가)

  • 최부귀;이형기;박양수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.738-746
    • /
    • 1998
  • This paper presents a neural network-based adaptive controller for a single flexible-link. The control for feedback-error loaming of neural network is designed by using the re-definition approach. The neural network controllers are implemented on an single flexible-link experimental test-bed. The tip response is significantly improved and the vibrations of the flexible modes are damped very fast. Experimental and simulation results are presented of the proposed tip position tracking controllers over the conventional PD-type, passive controllers.

  • PDF

A neural network method for recognition of part orientation in a bowl feeder (보울 피이더에서 신경 회로망을 이용한 부품 자세 인식에 관한 연구)

  • 임태균;김종형;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.275-280
    • /
    • 1990
  • A neural network method is applied for recognizing the orientation o f individual parts being fed from a bowl feeder. The system is designed in such a way that a part can be discriminated and sorting according to every possible stable orientation without implementing any a mechanical tooling. The operation of the bowl feeder is based on a 2D image obtained from an array of fiber optic sensor located on the feeder track. The acquired binary image of a moving and vibrating part is used as input to a neural network which, in turn, determines t he orientation of the part. The main task of the neural network, here is to synthesize the appropriate internal discriminant functions for the part orientation using the part features. A series of the experiments reveals several promising points on performance. Since the operation of the feeder is highly programmable, it is well suited for feeding and sorting small parts prior to small batch assembly work.

  • PDF

A development of multi-step neural network predictive controller (다단 신경회로망 예측제어기 개발)

  • 이권순
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.8
    • /
    • pp.68-74
    • /
    • 1998
  • The neural network predictiv econtroller (NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output (NNP:neural network predictor) and the other one is for control the plant(NNC: neural network controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and predictin error. The NNP forecasts the future output based upon the current control input and the estimated control output. The input and the output data of a system and a new method using evolution strategy are used to train the NNP. A two-step NNPC is applied to control the temeprature in boiler systems. It was compared with PI controller and auto-tuning PID controller. The computer simulaton and experimental results show that the proposed method has better performances than the other method.

  • PDF