• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Deep learning-based automatic segmentation of the mandibular canal on panoramic radiographs: A multi-device study

  • Moe Thu Zar Aung;Sang-Heon Lim;Jiyong Han;Su Yang;Ju-Hee Kang;Jo-Eun Kim;Kyung-Hoe Huh;Won-Jin Yi;Min-Suk Heo;Sam-Sun Lee
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.81-91
    • /
    • 2024
  • Purpose: The objective of this study was to propose a deep-learning model for the detection of the mandibular canal on dental panoramic radiographs. Materials and Methods: A total of 2,100 panoramic radiographs (PANs) were collected from 3 different machines: RAYSCAN Alpha (n=700, PAN A), OP-100 (n=700, PAN B), and CS8100 (n=700, PAN C). Initially, an oral and maxillofacial radiologist coarsely annotated the mandibular canals. For deep learning analysis, convolutional neural networks (CNNs) utilizing U-Net architecture were employed for automated canal segmentation. Seven independent networks were trained using training sets representing all possible combinations of the 3 groups. These networks were then assessed using a hold-out test dataset. Results: Among the 7 networks evaluated, the network trained with all 3 available groups achieved an average precision of 90.6%, a recall of 87.4%, and a Dice similarity coefficient (DSC) of 88.9%. The 3 networks trained using each of the 3 possible 2-group combinations also demonstrated reliable performance for mandibular canal segmentation, as follows: 1) PAN A and B exhibited a mean DSC of 87.9%, 2) PAN A and C displayed a mean DSC of 87.8%, and 3) PAN B and C demonstrated a mean DSC of 88.4%. Conclusion: This multi-device study indicated that the examined CNN-based deep learning approach can achieve excellent canal segmentation performance, with a DSC exceeding 88%. Furthermore, the study highlighted the importance of considering the characteristics of panoramic radiographs when developing a robust deep-learning network, rather than depending solely on the size of the dataset.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.