• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.042 seconds

Fast Content-preserving Seam Estimation for Real-time High-resolution Video Stitching (실시간 고해상도 동영상 스티칭을 위한 고속 콘텐츠 보존 시접선 추정 방법)

  • Kim, Taeha;Yang, Seongyeop;Kang, Byeongkeun;Lee, Hee Kyung;Seo, Jeongil;Lee, Yeejin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.1004-1012
    • /
    • 2020
  • We present a novel content-preserving seam estimation algorithm for real-time high-resolution video stitching. Seam estimation is one of the fundamental steps in image/video stitching. It is to minimize visual artifacts in the transition areas between images. Typical seam estimation algorithms are based on optimization methods that demand intensive computations and large memory. The algorithms, however, often fail to avoid objects and results in cropped or duplicated objects. They also lack temporal consistency and induce flickering between frames. Hence, we propose an efficient and temporarily-consistent seam estimation algorithm that utilizes a straight line. The proposed method also uses convolutional neural network-based instance segmentation to locate seam at out-of-objects. Experimental results demonstrate that the proposed method produces visually plausible stitched videos with minimal visual artifacts in real-time.

The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions (도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계)

  • Son, Su-Rak;Jeong, Yi-Na;Ahn, Heui-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.223-230
    • /
    • 2021
  • Currently, self-driving vehicles are on the verge of commercialization after testing. However, even though autonomous vehicles have not been fully commercialized, 81 accidents have occurred, and the driving method of vehicles to avoid accidents relies heavily on LiDAR. In order for the currently commercialized 3-level autonomous vehicle to develop into a 4-level autonomous vehicle, more information must be collected than previously collected information. Therefore, this paper proposes a Driving Situation Judgment System (DSJS) that accurately calculates the crisis situation the vehicle is in by useing the roughness of the road and the state of the passengers of surrounding vehicles including road information and weather information collected from existing autonomous vehicles. As a result of DSJS's PDM experiment, PDM was able to classify passengers 15.52% more accurately on average than the existing vehicle's passenger recognition system. This study can be a basic research to achieve the 4th level autonomous vehicle by collecting more various types than the data collected by the existing 3rd level autonomous vehicle.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Novel Anomaly Detection Method for Proactive Prevention from a Mobile E-finance Accident with User"s Input Pattern Analysis (모바일 디바이스에서의 전자금융사고 예방을 위한 사용자입력패턴분석 기반 이상증후 탐지 방법)

  • Seo, Ho-Jin;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.47-60
    • /
    • 2011
  • With the increase in the use of mobile banking service, mobile banking has become an attractive target to attackers. Even though many security measures are applied to the current mobile banking service, some threats such as physical theft or penetration to a mobile device from remote side are still remained as unsolved. With aiming to fill this void, we propose a novel approach to prevent e-financial incidents by analyzing mobile device user's input patterns. This approach helps us to distinguish between original user's usage and attacker's usage through analyzing personal input patterns such as input time-interval, finger pressure level on the touch screen. Our proposed method shows high accuracy, and is effective to prevent the e-finance incidents proactively.

Feasibility Study of Google's Teachable Machine in Diagnosis of Tooth-Marked Tongue

  • Jeong, Hyunja
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.206-212
    • /
    • 2020
  • Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.

Deep learning based Person Re-identification with RGB-D sensors

  • Kim, Min;Park, Dong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • In this paper, we propose a deep learning-based person re-identification method using a three-dimensional RGB-Depth Xtion2 camera considering joint coordinates and dynamic features(velocity, acceleration). The main idea of the proposed identification methodology is to easily extract gait data such as joint coordinates, dynamic features with an RGB-D camera and automatically identify gait patterns through a self-designed one-dimensional convolutional neural network classifier(1D-ConvNet). The accuracy was measured based on the F1 Score, and the influence was measured by comparing the accuracy with the classifier model (JC) that did not consider dynamic characteristics. As a result, our proposed classifier model in the case of considering the dynamic characteristics(JCSpeed) showed about 8% higher F1-Score than JC.

Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated (회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법)

  • Gu, Bongen
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • For protecting copyright for trademark, convolutional neural network can be used to confirm genuine of trademark image. For this, repeated training one trademark image degrades the performance of machine learning because of overfitting problem. Therefore, this type of machine learning application generates training data in various way. But if genuine trademark image is rotated, this image is classified as not genuine trademark. In this paper, we propose the way for extending training data to confirm genuine of trademark image which is rotated. Our proposed way generates rotated image from genuine trademark image as training data. To show effectiveness of our proposed way, we use CNN machine learning model, and evaluate the accuracy with test image. From evaluation result, our way can be used to generate training data for machine learning application which confirms genuine of rotated trademark image.

  • PDF

Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server (YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현)

  • Jo, Yong-Hwa;Lee, Hyuek-Jae;Kim, Young-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This paper implements a method of extracting an object about a dog through real-time image analysis and classifying dog behaviors from the extracted images. The Darknet YOLO was used to detect dog objects, and the Teachable Machine provided by Google was used to classify behavior patterns from the extracted images. The trained Teachable Machine is saved in Google Drive and can be used by ml5.js implemented on a node.js server. By implementing an interactive web server using a socket.io module on the node.js server, the classified results are transmitted to the user's smart phone or PC in real time so that it can be checked anytime, anywhere.

Priority-based Multi-DNN scheduling framework for autonomous vehicles (자율주행차용 우선순위 기반 다중 DNN 모델 스케줄링 프레임워크)

  • Cho, Ho-Jin;Hong, Sun-Pyo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.368-376
    • /
    • 2021
  • With the recent development of deep learning technology, autonomous things technology is attracting attention, and DNNs are widely used in embedded systems such as drones and autonomous vehicles. Embedded systems that can perform large-scale operations and process multiple DNNs for high recognition accuracy without relying on the cloud are being released. DNNs with various levels of priority exist within these systems. DNNs related to the safety-critical applications of autonomous vehicles have the highest priority, and they must be handled first. In this paper, we propose a priority-based scheduling framework for DNNs when multiple DNNs are executed simultaneously. Even if a low-priority DNN is being executed first, a high-priority DNN can preempt it, guaranteeing the fast response characteristics of safety-critical applications of autonomous vehicles. As a result of checking through extensive experiments, the performance improved by up to 76.6% in the actual commercial board.

Video Camera Model Identification System Using Deep Learning (딥 러닝을 이용한 비디오 카메라 모델 판별 시스템)

  • Kim, Dong-Hyun;Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.1-9
    • /
    • 2019
  • With the development of imaging information communication technology in modern society, imaging acquisition and mass production technology have developed rapidly. However, crime rates using these technology are increased and forensic studies are conducted to prevent it. Identification techniques for image acquisition devices are studied a lot, but the field is limited to images. In this paper, camera model identification technique for video, not image is proposed. We analyzed video frames using the trained model with images. Through training and analysis by considering the frame characteristics of video, we showed the superiority of the model using the P frame. Then, we presented a video camera model identification system by applying a majority-based decision algorithm. In the experiment using 5 video camera models, we obtained maximum 96.18% accuracy for each frame identification and the proposed video camera model identification system achieved 100% identification rate for each camera model.