KIPS Transactions on Software and Data Engineering
/
v.8
no.4
/
pp.163-170
/
2019
Korea language has postpositions such as eul, reul, yi, ga, wa, and gwa, which are attached to nouns and add meaning to the sentence. When foreign notations or abbreviations are included in sentences, the appropriate postposition for the pronunciation of the foreign words may not be used. Sometimes, for natural expression of the sentence, two postpositions are used with one in parentheses as in "eul(reul)" so that both postpositions can be acceptable. This study finds examples of using unnatural postpositions when foreign words are included in Korean sentences and proposes a method for using natural postpositions by learning the final consonant pronunciation of nouns. The proposed method uses a recurrent neural network model to naturally express postpositions connected to foreign words. Furthermore, the proposed method is proven by learning and testing with the proposed method. It will be useful for composing perfect sentences for machine translation by using natural postpositions for English abbreviations or new foreign words included in Korean sentences in the future.
In the field of data mining technique, there are various methods such as association rules, cluster analysis, decision tree, neural network. Among them, association rules are defined by using various association evaluation criteria such as support, confidence, and lift. Agrawal et al. (1993) first proposed this association rule, and since then research has been conducted by many scholars. Recently, studies related to crossover entropy have been published (Park, 2016b). In this paper, we proposed a purely symmetric J measure considering directionality and purity in the previously published J measure, and examined its usefulness by using examples. As a result, it is found that the pure symmetric J measure changes more clearly than the conventional J measure, the symmetric J measure, and the pure crossover entropy measure as the frequency of coincidence increases. The variation of the pure symmetric J measure was also larger depending on the magnitude of the inconsistency, and the presence or absence of the association was more clearly understood.
Journal of The Korean Association of Information Education
/
v.25
no.5
/
pp.813-824
/
2021
To improve educational performance by analyzing the learning trends of adult learners of Open High Schools, various algorithm models using artificial intelligence were designed and performance was evaluated by applying them to real data. We analyzed Log data of 115 adult learners in the cyber education system of Open High Schools. Most adult learners of Open High Schools learned more than recommended learning time, but at the end of the semester, the actual learning time was significantly reduced compared to the recommended learning time. In the second half of learning, the participation rate of VODs, formation assessments, and learning activities also decreased. Therefore, in order to improve educational performance, learning time should be supported to continue in the second half. In the latter half, we developed an artificial intelligence algorithm models using Tensorflow to predict learning time by data they started taking the course. As a result, when using CNN(Convolutional Neural Network) model to predict single or multiple outputs, the mean-absolute-error is lowest compared to other models.
The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.20-20
/
2017
최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.
Recently, as data mining and artificial neural network techniques are developed, analyzing large amounts of data is proposed to reduce the dimension of the data. In general, empirical orthogonal function (EOF) used to reduce the dimension in the ocean data and recently, Self-organizing maps (SOM) algorithm have been investigated to apply to the ocean field. In this study, both algorithms used the monthly Sea level anomaly (SLA) data from 1993 to 2018 around the East Asia Coasts. There was dominated by the influence of the Kuroshio Extension and eddy kinetic energy. It was able to find the maximum amount of variance of EOF modes. SOM algorithm summarized the characteristic of spatial distributions and periods in EOF mode 1 and 2. It was useful to find the change of SLA variable through the movement of nodes. Node 1 and 5 appeared in the early 2000s and the early 2010s when the sea level was high. On the other hand, node 2 and 6 appeared in the late 1990s and the late 2000s, when the sea level was relatively low. Therefore, it is considered that the application of the SOM algorithm around the East Asia Coasts is well distinguished. In addition, SOM results processed by SLA data, it is able to apply the other climate data to explain more clearly SLA variation mechanisms.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.1
/
pp.93-98
/
2021
Due to the development of deep learning and AI, the scale of the model has grown, and it has been integrated into other fields to blend into our lives. However, in environments with limited resources such as embedded devices, it is exist difficult to apply the model and problems such as power shortages. To solve this, lightweight methods such as clouding or offloading technologies, reducing the number of parameters in the model, or optimising calculations are proposed. In this paper, quantization of learned models is applied to ONNX models used in various framework interchange formats, neural network structure and inference performance are compared with existing models, and various module methods for quantization are analyzed. Experiments show that the size of weight parameter is compressed and the inference time is more optimized than before compared to the original model.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.8
/
pp.993-998
/
2020
The technology of interiors is currently developing around the world. According to various studies, the use of plants to create an environment in the home interior is increasing. However, households using furniture are designed as environment-friendly environment interiors, and in Korea and abroad, plants are used for home interiors. Unexpected accidents are occurring. As a result, there were books and broadcasts about the dangers of specific plants, but until now, accidents continue to occur because they do not properly recognize the dangers of specific plants. Therefore, in this paper, we propose a toxic plant identification system based on a multiplicative neural network model that identifies common toxic plants commonly found in Korea. We propose a high efficiency model. Through this, toxic plants can be identified with higher accuracy and safety accidents caused by toxic plants.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.3
/
pp.384-390
/
2020
The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.56-62
/
2021
High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.