DOI QR코드

DOI QR Code

CNN-Based Toxic Plant Identification System

CNN 기반 독성 식물 판별 시스템

  • Park, SungHyun (Department of Computer Engineering, Paichai University) ;
  • Lim, Byeongyeon (Department of Computer Engineering, Paichai University) ;
  • Jung, Hoekyung (Department of Computer Engineering, Paichai University)
  • Received : 2020.04.10
  • Accepted : 2020.05.29
  • Published : 2020.08.31

Abstract

The technology of interiors is currently developing around the world. According to various studies, the use of plants to create an environment in the home interior is increasing. However, households using furniture are designed as environment-friendly environment interiors, and in Korea and abroad, plants are used for home interiors. Unexpected accidents are occurring. As a result, there were books and broadcasts about the dangers of specific plants, but until now, accidents continue to occur because they do not properly recognize the dangers of specific plants. Therefore, in this paper, we propose a toxic plant identification system based on a multiplicative neural network model that identifies common toxic plants commonly found in Korea. We propose a high efficiency model. Through this, toxic plants can be identified with higher accuracy and safety accidents caused by toxic plants.

현재 인테리어의 기술은 세계적으로 발전하고 있다. 다양한 연구가 진행됨에 따라 가정 인테리어도 환경 조성을 위해 식물을 활용하는 경우가 증가하고 있다. 그러나 활용되는 식물들의 증가에 비해 해당 식물들의 성질을 제대로 인지하지 못하여 예상치 못한 사고가 발생하고 있다. 이에 따라 특정 식물들의 위험성에 대해 다양한 매체를 통해 알리고 있지만 사고가 지속적으로 발생하고 있다. 이에 본 논문에서는 우리 주변에서 흔하게 접할 수 있는 대중적인 독성 식물을 판별하는 합성곱 신경망 모델 기반의 독성 식물 판별 시스템을 제안하였다. 이를 위해 독성 식물 판별을 진행하기 앞서 네 종류의 모델을 구축하였고 각 모델들을 비교 분석하였다. 분석한 모델들에 대해 높은 정확성을 갖는 합성곱 신경망 모델을 제안하였다. 이를 통하여 독성 식물들을 판별할 수 있으며, 독성 식물로 인한 안전사고를 줄일 수 있다고 사료된다.

Keywords

References

  1. G. Chen, P. Sun, and Y. Shang, "Automatic Fish Classification System Using Deep Learning," Tools with Artificial Intelligence(ICTAI), 2017 IEEE 29th International Conference on. IEEE, pp. 24-29, 2017.
  2. V. A. Sindagi, and V. M. Patel, "A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation," Pattern Recognition Letters, vol. 107, no. 1, pp. 3-16, 2018. https://doi.org/10.1016/j.patrec.2017.07.007
  3. Y. L. Choi, and K. H. Kim "Artificial Intelligence Oerview and Application Examples," Korean Society of Industrial Engineers, vol. 23, no. 2, pp. 23-29, 2016.
  4. MathWorks. Pretrained VGG-16 convolutional neural network, [Internet]. Available:https://kr.mathworks.com/help/deeplearning/ref/vgg16.html.
  5. G. O. Jeong, I. Y. Yeo, and H.K. Jung. "Classification Model of Facial Acne Using Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 4, pp. 381-37, 2019. https://doi.org/10.6109/JKIICE.2019.23.4.381
  6. S. H. Kim, J. K. Lee, N. J. Kwak, S. P. Ryu, and J. H. Ahn. "Grad-CAM Based Deep Learning Network for Location Detection of the Main Object," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 1, pp. 204-211, 2020.
  7. H. K. Kim, J. Y. Kim, and H. K. Jung, "Convolutional Neural Network Based Image Processing System," Journal of the Korea Institute of Information and Communication Engineering, vol. 16, no. 3, pp.160-165, 2018.
  8. C. H. Hwang, H. S. Kim, and H. K Jung, "Detection and Correction Method of Erroneous Data Using Quantile Pattern and LSTM," Journal of Information and Communication Convergence, vol. 16, no. 4, pp.242-247, Dec. 2018.
  9. G. Wang, and S. Y. Shin, "An Improved Text Classification Method for Sentiment Classification," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 1, pp. 41-48, 2019. https://doi.org/10.6109/jkiice.2013.17.1.41