본 논문에서는 CNN 기반 서명인식에서 시간정보를 이용하여 위조서명을 보다 정확하게 판별하는 방법을 제안한다. 시간정보를 이용하는 첫 번째 방법은 서명하는 전체 시간을 동일한 개수의 등 간격으로 나누어 각각의 이미지를 얻고 이를 합성하여 이용하는 방법이다. 두 번째 방법은 동일한 개수의 등 간격으로 나누어진 각각의 이미지를 CNN-LSTM 으로 판별하는 방법이다. 동일한 개수의 등 간격으로 나누어진 이미지들에는 서명의 속도에 따른 모양의 차이가 발생하기 때문에 비록 최종 서명의 모양이 원본과 매우 유사하다고 하더라도 속도가 다른 경우 위조임을 판별할 수 있다. 두 명의 서명에 대하여 실험을 한 결과 최종 서명이 매우 유사하더라도 속도가 다른 경우 위조로 판별할 수 있음을 보였다. 다만 이미지 합성 과정에 만들어진 새로운 정보로 인하여 진짜 서명을 가짜로 판별할 수 있는 가능성도 늘어날 수 있음을 확인하였다.
이미지를 이용해 공종을 분류하는 작업은 건설 관리와 공정 관리와 같은 더욱 복잡한 어플리케이션에서 중요한 역할을 수행할 수 있다. 하지만, 공사 현장에서 수집한 이미지들은 항상 깨끗하지 않을 수 있고, 이와 같이 문제가 있는 이미지들은 이미지 분류기의 성능에 부정적인 타격을 입힐 수 있다. 이러한 가능성은 공종을 판별하는 시스템을 보조할 수 있는 데이터나 방법의 필요성을 부각한다. 본 연구에서 우리는 공종의 선·후행 관계를 이용해 이미지 분류기를 보조하여 공종을 판별하는 시스템의 성능을 높이는 방법을 제시한다. 그리고 제시하는 방법이 공종 판별의 성능을 향상시킬 수 있다는 것을 보인다. 특히, 이미지 판별기의 성능이 좋지 않을때 더욱 드라마틱한 성능의 향상을 경험할 수 있다는 것을 알 수 있었다.
Dead Link의 노출 최소화는 웹 검색 서비스의 품질 유지에 있어 매우 중요하다. 따라서 색인 내 Soft 404 오류의 정확한 판별은 필수적이지만, 리다이렉션 정보에 의존하거나 텍스트 혹은 HTML 자질 만을 고려하는 기존 방법의 활용만으로는 판별 가능한 Soft 404 오류의 유형이 한정될 수 있다는 문제가 있다. 이에 본 연구에서는 보다 범용성이 높은 Soft 404 오류 판별 기술의 개발을 위해, 404 오류 안내 페이지 고유의 형태적 특성을 오류 판별에 사용할 것을 제안한다. 제안 방법은 오류 안내 문서의 형태적 특성을 이미지 인식 모형에 기반해 학습한 후 이를 Soft 404 오류 판별에 사용하며, 리다이렉션 등 특정 정보에 의존하는 기존 방법에 비해 보다 폭넓게 적용 가능하다는 장점이 있다. 실험에서 제안 방법은 87.6%의 정확률과 92.7%의 재현율을 기록하는 등 높은 인식 성능을 보였다.
본 연구에서는 이미지 분석기법으로부터 측정된 표면섬유과 가와바타 측정법에 의해 측정된 직물의 표면특성과 주관적 거칠기, 따뜻함간의 관계를 고찰하였다. 시료로는 춘추용 수트직물로 사용되는 평직과 능직의 소모직물 32종을 사용하였다. 표면섬유의 분석을 위해서 이미지 분석장치로부터 촬영된 직물 표면 이미지로부터 단위길이의 직물안에 들어가는 표면섬유의 총길이(Fiber Aggregate Length)가 측정되었다. 직물의 주관적 평가를 위해 일관성 테스트와 평가능력 향상 훈련을 마친 20명 패널을 대상으로 기준직물을 제시한 9 의미미분척도를 사용하여 직물의 거칠기와 따뜻함에 대해 평가하였다. 직물의 표면섬유와 주관적인 거칠기, 따뜻함간의 상관성이 분석되었고, 직물의 표면 특성, 표면섬유로부터 직물의 감각을 판별하는 판별식을 도출하였다.
인공지능(Artificial Intelligence, AI) 기반 이미지 생성 기술의 발달로 다양한 이미지가 생성되고 있으며, 이를 정확하게 판별하는 기술이 필요하다. 생성된 이미지 데이터의 양에는 한계가 있으며, 한정된 데이터로 높은 성능을 내기 위해 본 연구에서는 전이 학습(Transfer Learning)을 활용한 생성 이미지를 판별하는 모델을 제안한다. ImageNet 데이터 셋으로 사전학습 된 모델을 입력 데이터 셋인 CIFAKE 데이터 셋에 그대로 적용하여 학습의 시간 비용을 줄인 후, 3개의 은닉층과 1개의 출력층을 더해 모델을 튜닝한다. 모델링 결과, 최종 레이어를 조정한 모델의 성능이 높아짐을 확인하였다. 딥러닝에서 전이 학습을 통해 학습한 후 출력층과 가까운 레이어를 데이터의 특성에 맞게 추가 및 조정하는 과정을 통해 적은 이미지 데이터로 인한 학습 정확도 이슈를 줄이고 생성된 이미지 판별을 할수 있다는 데 의의가 있다.
본 논문에서는 차량 헤드라이트의 불량 유무를 판별하기 위하여 생산된 헤드라이트 이미지를 위치 및 회전 보정 후 검사이미지의 ROI(Region of Interest)와 표준 이미지의 ROI와의 유사도를 이용하여 불량 유무를 판단하는 방법을 제안하였다. 유사도 판별은 OpenCV에서 제공하는 템플릿매칭 유사도 판별방법을 응용하여 히스토그램 기반에서 유사도를 판별하는 방법을 사용하였고, 성능 분석을 목적으로 기존 OpenCV의 기본 방법과 비교하였다. 분석결과, OpenCV의 기본 방법보다 좋은 성능을 보임을 알 수 있었고, 제안 방법의 경우 불량 판별율 100%에 근접함을 알 수 있었다.
한국의 육류 소비량이 늘어감에 따라 한우의 수요 및 공급도 점차 늘어가고 있다. 한우는 육질 등급(QG)과 육량 등급(YG)으로 나누어 판별되며 근내지방도, 고기 색, 지방색, 조직감, 성숙도, 도체 중량, 배최장근 단면적, 등지방두께 등 여러 항목을 고려한다. 현재는 주로 등배근을 맨눈으로 확인하는 수동 판별 방식이 사용된다. 하지만 평가사가 정확하게 판단하기 어렵고, 작업자의 부주의로 인한 육류의 오염 등 시간과 비용의 문제점이 있다. 본 연구에서는 이러한 문제점들을 한우 등급 판별 자동화로 해결하기 위해 한우의 등심 단면 이미지를 활용하여 등배근의 근내지방도를 산출하고 한우 등급을 자동 판별하는 알고리즘을 구현하였으며 평균 정확도는 79.2%를 달성하였다.
최근 들어 IT기술의 발전은 급속도로 성장하고 있다. 이에 따라 실시간 이미지 프로세싱 및 여러 플랫폼의 호환성을 제공하는 OpenCV를 활용한 이미지 처리 기술들에 대한 연구도 활발히 진행 중에 있다. 현재, 서로 다른 이미지를 비교, 유사성을 판별하는 시스템은 일치율이 낮거나, 사람이 아날로그적인 수치를 이용하여 판별하는 시스템이 대부분이다. 본 논문에서는 OpenCV의 Template Matching과 Feature Matching을 활용하여 서로 다른 이미지 간 유사성을 디지털 값으로 판별하는 시스템에 대해 연구한다. 이미지 스크린 중 비교점을 특정하여 피처를 추출, 서로 상이한 크기에서도 동일한 피처로 인식하여 비교대상 이미지의 피처셋과 비교하여 유서성을 비교, 검증하게 된다. 이는 음성 및 영상 인식 및 분석, 처리기술에서 보다 정확인 일치율 판독이 가능하다. 향후 법의학 및 OpenCV외의 이미지 처리기술에 대한 연구가 필요할 것으로 사료된다.
본 논문은 주민등록증의 정보와 본인 생체 지문으로 본인임을 확인하는 알고리즘을 제안한다. 기존의 본인 확인 방법은 주민등록증의 사진과 실물사진을 육안으로 판별한다. 이러한 판별 방법의 문제점은 주민등록증 발급 시의 사진과 현재의 본인 얼굴과의 차이점이 많을 때 본인임에도 판별이 불가능한 경우도 발생하고 주민등록중의 훼손으로 판별이 불가능할 수 가 있다. 이러한 단점을 본 알고리즘에서는 생체인식기술인 지문인식과 문자인식기술을 접목하여 주민등록상의 지문이미지와 지문입력기에서 입력받은 생체지문을 비교판별하고 주민등록증 발급 시 입력한 지문과도 비교 판별함으로써 보다 확실한 본인 확인방법을 제공한다.
스마트폰을 이용한 사진 촬영이 보편화됨에 따라 이미지 조작, 기밀 유출로 인한 사건이 빈번하게 발생되고 있어 이미지 파일의 위변조 여부와 원본 증명에 대한 수요가 꾸준히 증가하고 있다. 일반적으로 스마트폰은 사진 파일을 JPEG 형식의 이미지 파일로 저장하는데 JPEG 이미지의 Header부분에는 이미지의 압축률을 결정하는데 사용되는 DQT가 저장되어 있다. 또한 JPEG 내부 Thumbnail 이미지에도 DQT가 존재한다. 기존의 연구에서는 DQT만을 이용해 이미지를 촬영한 장치를 판별하였다. 하지만 이 연구는 장치를 판별하기에는 정확도가 매우 낮다. 이에 본 논문에서는 DQT 정보뿐만 아니라 Thumbnail 이미지의 DQT 정보에 대한 실험을 통해 사진을 촬영한 스마트폰 기기와 사진 파일을 편집하고 저장한 애플리케이션을 유추할 수 있도록 JPEG 파일의 DQT 정보 및 Thumbnail 이미지의 DQT 정보 데이터베이스를 구축하여 보다 정확한 이미지의 출처 판별을 돕는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.