DOI QR코드

DOI QR Code

Enhancing Work Trade Image Classification Performance Using a Work Dependency Graph

공정의 선후행관계를 이용한 공종 이미지 분류 성능 향상

  • Received : 2020.12.10
  • Accepted : 2021.01.12
  • Published : 2021.01.31

Abstract

Classifying work trades using images can serve an important role in a multitude of advanced applications in construction management and automated progress monitoring. However, images obtained from work sites may not always be clean. Defective images can damage an image classifier's accuracy which gives rise to a needs for a method to enhance a work trade image classifier's performance. We propose a method that uses work dependency information to aid image classifiers. We show that using work dependency can enhance the classifier's performance, especially when a base classifier is not so great in doing its job.

이미지를 이용해 공종을 분류하는 작업은 건설 관리와 공정 관리와 같은 더욱 복잡한 어플리케이션에서 중요한 역할을 수행할 수 있다. 하지만, 공사 현장에서 수집한 이미지들은 항상 깨끗하지 않을 수 있고, 이와 같이 문제가 있는 이미지들은 이미지 분류기의 성능에 부정적인 타격을 입힐 수 있다. 이러한 가능성은 공종을 판별하는 시스템을 보조할 수 있는 데이터나 방법의 필요성을 부각한다. 본 연구에서 우리는 공종의 선·후행 관계를 이용해 이미지 분류기를 보조하여 공종을 판별하는 시스템의 성능을 높이는 방법을 제시한다. 그리고 제시하는 방법이 공종 판별의 성능을 향상시킬 수 있다는 것을 보인다. 특히, 이미지 판별기의 성능이 좋지 않을때 더욱 드라마틱한 성능의 향상을 경험할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. Asadi, K., Suresh, A.K., Ender, A., Gotad, S., Maniyar, S., Anand, S., and Wu, T. (2020). "An integrated ugvuav system for construction site data collection." Automation in Construction, 112, 103068. https://doi.org/10.1016/j.autcon.2019.103068
  2. Baltrusaitis, T., Ahuja, C., and Morency, L.P. (2018). "Multimodal machine learning: A survey and taxonomy." IEEE transactions on pattern analysis and machine intelligence, 41(2), pp. 423-443. https://doi.org/10.1109/tpami.2018.2798607
  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and Fei-Fei, L. (2009). "Imagenet: A large-scale hi-erarchical image database." In 2009 Ieee conference on Computer vision and pattern recognition, pp. 248-255.
  4. Dupont, Q.F., Chua, D.K., Tashrif, A., and Abbott, E.L. (2017). "Potential applications of uav along the construction's value chain." Procedia Engineering, 182, pp. 165-173. https://doi.org/10.1016/j.proeng.2017.03.155
  5. El-Omari, S., and Moselhi, O. (2011). "Integrat-ing automated data acquisition technologies for progress reporting of construction projects." Automation in Construction, 20(6), pp. 699-705. https://doi.org/10.1016/j.autcon.2010.12.001
  6. Fard, M.G., and Pena-Mora, F. (2007). "Application of visualization techniques for construction progress monitoring." In Computing in Civil Engineering, pp. 216-223.
  7. Gil, D., Lee, G., and Jeon, K. (2018). "Classification of images from construction sites using a deep-learning algorithm." 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, ISARC 2018.
  8. Hajian, H., and Becerik-Gerber, B. (2010). "Scan to bim: factors affecting operational and computational errors and productivity loss." In 27th international symposium on automation and robotics in construction, pp. 265-272.
  9. Hammad, A., and Motamedi, A. (2007). "Framework for lifecycle status tracking and visualization of constructed facility components." In 7th international conference on construction applications of virtual reality, pp. 224-232.
  10. Han, K.K., and Golparvar-Fard, M. (2017). "Poten-tial of big visual data and building information modeling for construction performance analyt-ics: An exploratory study." Automation in Con-struction, 73, pp. 184-198. https://doi.org/10.1016/j.autcon.2016.11.004
  11. Ibrahim, Y., Lukins, T.C., Zhang, X., Trucco, E., and Kaka, A. (2009). "Towards automated progress assessment of work package components in con-struction projects using computer vision." Advanced Engineering Informatics, 23(1), pp. 93-103. https://doi.org/10.1016/j.aei.2008.07.002
  12. Jeong, S. (2020). Investigating Noise Robustness of Convolutional Neural Networks for Image Classification Using Gabor Filters (Doctoral dissertation, Vanderbilt University).
  13. Kangari, R. (1995). "Construction documentation inarbitration." Journal of construction engineer-ing and management, 121(2), pp. 201-208. https://doi.org/10.1061/(ASCE)0733-9364(1995)121:2(201)
  14. Kim, K., Cho, Y., and Kim, K. (2018). "Bim-driven automated decision support system for safety planning of temporary structures." Journal of Construction Engineering and Management, 144(8), 04018072. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001519
  15. Kim, P., Chen, J., and Cho, Y.K. (2018). "Slam-driven robotic mapping and registration of 3d point clouds." Automation in Construction, 89, pp. 38-48. https://doi.org/10.1016/j.autcon.2018.01.009
  16. Kopsida, M., Brilakis, I., and Vela, P.A. (2015). "A re-view of automated construction progress moni-toring and inspection methods." In Proc. of the 32nd cibw78 conference 2015, pp. 421-431.
  17. LeCun, Y., and Cortes, C. (2010). MNIST hand written digit database. http://yann.lecun.com/exdb/mnist/. Retrieved 2016-01-1414:24:11, from http://yann.lecun.com/exdb/mnist/
  18. Louis, J., and Dunston, P.S. (2018). "Integrating iot into operational work flows for real-time and automated decision-making in repetitive construction operations." Automation in Construction, 94, pp. 317-327. https://doi.org/10.1016/j.autcon.2018.07.005
  19. Navon, R. (2007). "Research in automated measurement of project performance indicators." Automation in Construction, 16(2), pp. 176-188. https://doi.org/10.1016/j.autcon.2006.03.003
  20. Rebolj, D., Babic, N.C., Magdic, A., Podbreznik, P., and Psunder, M. (2008). "Automated construction activity monitoring system." Advanced Engineering Informatics, 22(4), pp. 493-503. https://doi.org/10.1016/j.aei.2008.06.002
  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). "Rethinking the inception architecture for computer vision." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826.
  22. Tang, S., Shelden, D.R., Eastman, C.M., Pishdad-Bozorgi, P., and Gao, X. (2019). "A review of building information modeling (bim) and the internet of things (iot) devices integration: Present status and future trends." Automation in Construction, 101, pp. 127-139. https://doi.org/10.1016/j.autcon.2019.01.020
  23. Wang, C., Cho, Y.K., and Kim, C. (2015). "Automatic bim component extraction from point clouds of existing buildings for sustainability applications." Automation in Construction, 56, pp. 1-13. https://doi.org/10.1016/j.autcon.2015.04.001
  24. Wang, Q., Tan, Y., and Mei, Z. (2020). "Computational methods of acquisition and processing of 3d point cloud data for construction applications." Archives of Computational Methods in Engineering, 27(2), pp. 479-499. https://doi.org/10.1007/s11831-019-09320-4
  25. Wu, J., Cai, N., Chen, W., Wang, H., and Wang, G. (2019). "Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset." Automation in Construction, 106, 102894. https://doi.org/10.1016/j.autcon.2019.102894
  26. Yang, J., Park, M.W., Vela, P.A., and Golparvar-Fard, M. (2015). "Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future." Advanced Engineering Informatics, 29(2), pp. 211-224. https://doi.org/10.1016/j.aei.2015.01.011
  27. Yeseol, K. (2019). "Automatic multi-label image classification model for construction site images (Unpublished doctoral dissertation)." Seoul National University Graduate School.