• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.042 seconds

Real-Time Fire Detection based on CNN and Grad-CAM (CNN과 Grad-CAM 기반의 실시간 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1596-1603
    • /
    • 2018
  • Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flames or smoke and have the disadvantage of slower processing speed due to additional preprocessing task. In this paper, we implemented a fire detection system which predicts the flames and the smoke at the same time by constructing a CNN model that supports multi-labeled classification. Also, the system can monitor the fire status in real time by using Grad-CAM which visualizes the position of classes based on the characteristics of CNN. Also, we tested our proposed system with 13 fire videos and got an average accuracy of 98.73% and 95.77% respectively for the flames and the smoke.

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

Deep Learning Model Selection Platform for Object Detection (사물인식을 위한 딥러닝 모델 선정 플랫폼)

  • Lee, Hansol;Kim, Younggwan;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, object recognition technology using computer vision has attracted attention as a technology to replace sensor-based object recognition technology. It is often difficult to commercialize sensor-based object recognition technology because such approach requires an expensive sensor. On the other hand, object recognition technology using computer vision may replace sensors with inexpensive cameras. Moreover, Real-time recognition is viable due to the growth of CNN, which is actively introduced into other fields such as IoT and autonomous vehicles. Because object recognition model applications demand expert knowledge on deep learning to select and learn the model, such method, however, is challenging for non-experts to use it. Therefore, in this paper, we analyze the structure of deep - learning - based object recognition models, and propose a platform that can automatically select a deep - running object recognition model based on a user 's desired condition. We also present the reason we need to select statistics-based object recognition model through conducted experiments on different models.

Sea Ice Type Classification with Optical Remote Sensing Data (광학영상에서의 해빙종류 분류 연구)

  • Chi, Junhwa;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1239-1249
    • /
    • 2018
  • Optical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.

Trend Review of Solar Energy Forecasting Technique (태양에너지 예보기술 동향분석)

  • Cheon, Jae ho;Lee, Jung-Tae;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Chang Ki;Kim, Bo-Young;Kim, Jin-Young;Park, Yu Yeon;Kim, Tae Hyun;Jo, Ha Na
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2019
  • The proportion of solar photovoltaic power generation has steadily increased in the power trade market. Solar energy forecast is highly important for the stable trade of volatile solar energy in the existing power trade market, and it is necessary to identify accurately any forecast error according to the forecast lead time. This paper analyzes the latest study trend in solar energy forecast overseas and presents a consistent comparative assessment by adopting a single statistical variable (nRMSE) for forecast errors according to lead time and forecast technology.

A Study on Detection of Small Size Malicious Code using Data Mining Method (데이터 마이닝 기법을 이용한 소규모 악성코드 탐지에 관한 연구)

  • Lee, Taek-Hyun;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, the abuse of Internet technology has caused economic and mental harm to society as a whole. Especially, malicious code that is newly created or modified is used as a basic means of various application hacking and cyber security threats by bypassing the existing information protection system. However, research on small-capacity executable files that occupy a large portion of actual malicious code is rather limited. In this paper, we propose a model that can analyze the characteristics of known small capacity executable files by using data mining techniques and to use them for detecting unknown malicious codes. Data mining analysis techniques were performed in various ways such as Naive Bayesian, SVM, decision tree, random forest, artificial neural network, and the accuracy was compared according to the detection level of virustotal. As a result, more than 80% classification accuracy was verified for 34,646 analysis files.

Bolt-Loosening Detection using Vision-Based Deep Learning Algorithm and Image Processing Method (영상기반 딥러닝 및 이미지 프로세싱 기법을 이용한 볼트풀림 손상 검출)

  • Lee, So-Young;Huynh, Thanh-Canh;Park, Jae-Hyung;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, a vision-based deep learning algorithm and image processing method are proposed to detect bolt-loosening in steel connections. To achieve this objective, the following approaches are implemented. First, a bolt-loosening detection method that includes regional convolutional neural network(RCNN)-based deep learning algorithm and Hough line transform(HLT)-based image processing algorithm are designed. The RCNN-based deep learning algorithm is developed to identify and crop bolts in a connection image. The HLT-based image processing algorithm is designed to estimate the bolt angles from the cropped bolt images. Then, the proposed vision-based method is evaluated for verifying bolt-loosening detection in a lab-scale girder connection. The accuracy of the RCNN-based bolt detector and HLT-based bolt angle estimator are examined with respect to various perspective distortions.

Rock Classification Prediction in Tunnel Excavation Using CNN (CNN 기법을 활용한 터널 암판정 예측기술 개발)

  • Kim, Hayoung;Cho, Laehun;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • Quick identification of the condition of tunnel face and optimized determination of support patterns during tunnel excavation in underground construction projects help engineers prevent tunnel collapse and safely excavate tunnels. This study investigates a CNN technique for quick determination of rock quality classification depending on the condition of tunnel face, and presents the procedure for rock quality classification using a deep learning technique and the improved method for accurate prediction. The VGG16 model developed by tens of thousands prestudied images was used for deep learning, and 1,469 tunnel face images were used to classify the five types of rock quality condition. In this study, the prediction accuracy using this technique was up to 83.9%. It is expected that this technique can be used for an error-minimizing rock quality classification system not depending on experienced professionals in rock quality rating.

Scheduling Generation Model on Parallel Machines with Due Date and Setup Cost Based on Deep Learning (납기와 작업준비비용을 고려한 병렬기계에서 딥러닝 기반의 일정계획 생성 모델)

  • Yoo, Woosik;Seo, Juhyeok;Lee, Donghoon;Kim, Dahee;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.99-110
    • /
    • 2019
  • As the 4th industrial revolution progressing, manufacturers are trying to apply intelligent information technologies such as IoT(internet of things) and machine learning. In the semiconductor/LCD/tire manufacturing process, schedule plan that minimizes setup change and due date violation is very important in order to ensure efficient production. Therefore, in this paper, we suggest the deep learning based scheduling generation model minimizes setup change and due date violation in parallel machines. The proposed model learns patterns of minimizing setup change and due date violation depending on considered order using the amount of historical data. Therefore, the experiment results using three dataset depending on levels of the order list, the proposed model outperforms compared to priority rules.

Development of a Model for Winner Prediction in TV Audition Program Using Machine Learning Method: Focusing on Program (머신러닝을 활용한 TV 오디션 프로그램의 우승자 예측 모형 개발: 프로듀스X 101 프로그램을 중심으로)

  • Gwak, Juyoung;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.155-171
    • /
    • 2019
  • In the entertainment industry which has great uncertainty, it is essential to predict public preference first. Thanks to various mass media channels such as cable TV and internet-based streaming services, the reality audition program has been getting big attention every day and it is being used as a new window to new entertainers' debut. This phenomenon means that it is changing from a closed selection process to an open selection process, which delegates selection rights to the public. This is characterized by the popularity of the public being reflected in the selection process. Therefore, this study aims to implement a machine learning model which predicts the winner of , which has recently been popular in South Korea. By doing so, this study is to extend the research method in the cultural industry and to suggest practical implications. We collected the data of winners from the 1st, 2nd, and 3rd seasons of the Produce 101 and implemented the predictive model through the machine learning method with the accumulated data. We tried to develop the best predictive model that can predict winners of by using four machine learning methods such as Random Forest, Decision Tree, Support Vector Machine (SVM), and Neural Network. This study found that the audience voting and the amount of internet news articles on each participant were the main variables for predicting the winner and extended the discussion by analyzing the precision of prediction.