• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.041 seconds

Lateral Control of High Speed Flight Based on Type-2 Fuzzy Logic (Type-2 Fuzzy logic에 기반 한 고속 항공기의 횡 운동 제어)

  • Song, Jin-Hwan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.479-486
    • /
    • 2013
  • There exist two major difficulties in developing flight control system: nonlinear dynamic characteristics and time-varying properties of parameters of aircraft. Instead of the difficulties, many high reliable and efficient control methodologies have been developed. But, most of the developed control systems are based on the exact mathematical modelling of aircraft and, in the absence of such a model, it is very difficult to derive performance, robustness and nominal stability. From these aspects, recently, some approaches to utilizing the intelligent control theories such as fuzzy logic control, neural network and genetic algorithm have appeared. In this paper, one advanced intelligent lateral control system of a high speed fight has been developed utilizing type-2 fuzzy logic, which can deduce the uncertainty problem of the conventional fuzzy logic. The results will be verified through computer simulation.

System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm (절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩)

  • Han, Hyun-Woong;Ahn, Hyun-Chul
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.

A Novel Feature Selection Method for Output Coding based Multiclass SVM (출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.795-801
    • /
    • 2013
  • Recently, support vector machine has been widely used in various application fields due to its superiority of classification performance comparing with decision tree and neural network. Since support vector machine is basically designed for the binary classification problem, output coding method to analyze the classification result of multiclass binary classifier is used for the application of support vector machine into the multiclass problem. However, previous feature selection method for output coding based support vector machine found the features to improve the overall classification accuracy instead of improving each classification accuracy of each classifier. In this paper, we propose the novel feature selection method to find the features for maximizing the classification accuracy of each binary classifier in output coding based support vector machine. Experimental result showed that proposed method significantly improved the classification accuracy comparing with previous feature selection method.

Short Term Forecast Model for Solar Power Generation using RNN-LSTM (RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델)

  • Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2018
  • Since solar power generation is intermittent depending on weather conditions, it is necessary to predict the accurate generation amount of solar power to improve the efficiency and economical efficiency of solar power generation. This study proposes a short - term deep learning prediction model of solar power generation using meteorological data from Mokpo meteorological agency and generation data of Yeongam solar power plant. The meteorological agency forecasts weather factors such as temperature, precipitation, wind direction, wind speed, humidity, and cloudiness for three days. However, sunshine and solar radiation, the most important meteorological factors for forecasting solar power generation, are not predicted. The proposed model predicts solar radiation and solar radiation using forecast meteorological factors. The power generation was also forecasted by adding the forecasted solar and solar factors to the meteorological factors. The forecasted power generation of the proposed model is that the average RMSE and MAE of DNN are 0.177 and 0.095, and RNN is 0.116 and 0.067. Also, LSTM is the best result of 0.100 and 0.054. It is expected that this study will lead to better prediction results by combining various input.

Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning (지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측)

  • Jang, Jin-Hyuk;Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.478-484
    • /
    • 2018
  • This study predicts solar radiation, solar radiation, and solar power generation using hourly weather data such as temperature, precipitation, wind direction, wind speed, humidity, cloudiness, sunshine and solar radiation. I/O pattern in supervised learning is the most important factor in prediction, but it must be determined by repeated experiments because humans have to decide. This study proposed four input and output patterns for solar and sunrise prediction. In addition, we predicted solar power generation using the predicted solar and solar radiation data and power generation data of Youngam solar power plant in Jeollanamdo. As a experiment result, the model 4 showed the best prediction results in the sunshine and solar radiation prediction, and the RMSE of sunshine was 1.5 times and the sunshine RMSE was 3 times less than that of model 1. As a experiment result of solar power generation prediction, the best prediction result was obtained for model 4 as well as sunshine and solar radiation, and the RMSE was reduced by 2.7 times less than that of model 1.

A Novel Vehicle Counting Method using Accumulated Movement Analysis (누적 이동량 분석을 통한 영상 기반 차량 통행량 측정 방법)

  • Lim, Seokjae;Jung, Hyeonseok;Kim, Wonjun;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • With the rapid increase of vehicles, various traffic problems, e.g., car crashes, traffic congestions, etc, frequently occur in the road environment of the urban area. To overcome such traffic problems, intelligent transportation systems have been developed with a traffic flow analysis. The traffic flow, which can be estimated by the vehicle counting scheme, plays an important role to manage and control the urban traffic. In this paper, we propose a novel vehicle counting method based on predicted centers of each lane. Specifically, the centers of each lane are detected by using the accumulated movement of vehicles and its filtered responses. The number of vehicles, which pass through extracted centers, is counted by checking the closest trajectories of the corresponding vehicles. Various experimental results on road CCTV videos demonstrate that the proposed method is effective for vehicle counting.

Fast Detection of Disease in Livestock based on Deep Learning (축사에서 딥러닝을 이용한 질병개체 파악방안)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

A Study on an Inductive Motion Edit Methodology using a Uniform Posture Map (균등 자세 지도를 이용한 귀납적 동작 편집 기법에 관한 연구)

  • 이범로;정진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.162-171
    • /
    • 2003
  • It is difficult to reuse the captured motion data, because the data has a difficulty in editing it. In this paper, a uniform posture mar (UPM) algorithm, one of unsupervised learning neural network is proposed to edit the captured motion data. Because it needs much less computational cost than other motion editing algorithms, it is adequate to apply in teal-time applications. The UPM algorithm prevents from generating an unreal posture in learning phase. It not only makes more realistic motion curves, but also contributes to making more natural motions. Above of all, it complements the weakness of the existing algorithm where the calculation quantity increases in proportion to increase the number of restricted condition to solve the problems of high order articulated body. In this paper, it is shown two applications as a visible the application instance of UPM algorithm. One is a motion transition editing system, the other is a inductive inverse kinematics system. This method could be applied to produce 3D character animation based on key frame method, 3D game, and virtual reality, etc.

Design and Implementation of CNN-based HMI System using Doppler Radar and Voice Sensor (도플러 레이다 및 음성 센서를 활용한 CNN 기반 HMI 시스템 설계 및 구현)

  • Oh, Seunghyun;Bae, Chanhee;Kim, Seryeong;Cho, Jaechan;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.777-782
    • /
    • 2020
  • In this paper, we propose CNN-based HMI system using Doppler radar and voice sensor, and present hardware design and implementation results. To overcome the limitation of single sensor monitoring, the proposed HMI system combines data from two sensors to improve performance. The proposed system exhibits improved performance by 3.5% and 12% compared to a single radar and voice sensor-based classifier in noisy environment. In addition, hardware to accelerate the complex computational unit of CNN is implemented and verified on the FPGA test system. As a result of performance evaluation, the proposed HMI acceleration platform can be processed with 95% reduction in computation time compared to a single software-based design.

Design of E-Tongue System using Neural Network (신경회로망을 이용한 휴대용 전자 혀 시스템의 설계)

  • Jung, Young-Chang;Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.149-158
    • /
    • 2005
  • In this paper, we have designed and implemented a portable e-tongue (electronic tongue) system using MACS (multi array chemical sensor) and PDA. The system embedded in PDA has merits such as comfortable user interface and data transfer by internet from on-site to remote computer. MACS was made up 7 electrodes (${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH) and a reference electrode. For learning the system, we adapted the Levenberg-Marquardt algorithm based on the back-propagation, which could iteratively learned the pre-determined standard patterns, in e-tongue system. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. The e-tongue was applied to whiskeys and cognac (one high level whisky, one low level whiskey, two cognac) and 2 sample whiskeys for each standard patterns and unknown patterns. The relationship between the standard patterns and unknown patterns can be easily analyzed.

  • PDF