• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Design of Precipitation/non-precipitation Pattern Classification System based on Neuro-fuzzy Algorithm using Meteorological Radar Data : Instance Classifier and Echo Classifier (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 강수/비강수 패턴분류 시스템 설계 : 사례 분류기 및 에코 분류기)

  • Ko, Jun-Hyun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1114-1124
    • /
    • 2015
  • In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling (이미지 라벨링을 이용한 적층제조 단면의 결함 분류)

  • Lee, Jeong-Seong;Choi, Byung-Joo;Lee, Moon-Gu;Kim, Jung-Sub;Lee, Sang-Won;Jeon, Yong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.7-15
    • /
    • 2020
  • Recently, the fourth industrial revolution has been presented as a new paradigm and additive manufacturing (AM) has become one of the most important topics. For this reason, process monitoring for each cross-sectional layer of additive metal manufacturing is important. Particularly, deep learning can train a machine to analyze, optimize, and repair defects. In this paper, image classification is proposed by learning images of defects in the metal cross sections using the convolution neural network (CNN) image labeling algorithm. Defects were classified into three categories: crack, porosity, and hole. To overcome a lack-of-data problem, the amount of learning data was augmented using a data augmentation algorithm. This augmentation algorithm can transform an image to 180 images, increasing the learning accuracy. The number of training and validation images was 25,920 (80 %) and 6,480 (20 %), respectively. An optimized case with a combination of fully connected layers, an optimizer, and a loss function, showed that the model accuracy was 99.7 % and had a success rate of 97.8 % for 180 test images. In conclusion, image labeling was successfully performed and it is expected to be applied to automated AM process inspection and repair systems in the future.

A new approach to estimate the factor of safety for rooted slopes with an emphasis on the soil property, geometry and vegetated coverage

  • Maedeh, Pouyan Abbasi;Wu, Wei;da Fonseca, Antonio Viana;Irdmoosa, Kourosh Ghaffari;Acharya, Madhu Sudan;Bodaghi, Ehsan
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.269-288
    • /
    • 2018
  • 180 different 2D numerical analyses have been carried out to estimate the factor of safety (FOS) for rooted slopes. Four different types of vegetated coverage and a variety of slope geometry considering three types of soil have been evaluated in this study. The highly influenced parameters on the slope's FOS are determined. They have been chosen as the input parameters for developing a new practical relationship to estimate the FOS with an emphasis on the roots effects. The dependency of sliding mode and shape considering the soil and roots-type has been evaluated by using the numerical finite element model. It is observed that the inclination and height of the slope and the coverage type are the most important effective factors in FOS. While the soil strength parameters and its physical properties would be considered as the second major group that affects the FOS. Achieved results from the developed relationship have shown the acceptable estimation for the roots slope. The extracted R square from the proposed relationship considering nonlinear estimation has been achieved up to 0.85. As a further cross check, the achieved R square from a multi-layer neural network has also been observed to be around 0.92. The numerical verification considering different scenarios has been done in the current evaluation.

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.