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1. Introduction

Recently, as the fourth industrial revolution has 

been presented as a new paradigm, interest in big 

data analysis, robotics, and artificial intelligence has 

been on the rise. Therefore, various studies are 

being conducted on artificial intelligence to achieve 

rational human-like thinking[1]. In particular, the 

possibility of making use of this enhanced artificial 

intelligence for improving process efficiency by 

applying it to data storage, processing, automation, 
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ABSTRACT

Recently, the fourth industrial revolution has been presented as a new paradigm and additive manufacturing 

(AM) has become one of the most important topics. For this reason, process monitoring for each 

cross-sectional layer of additive metal manufacturing is important. Particularly, deep learning can train a 

machine to analyze, optimize, and repair defects. In this paper, image classification is proposed by learning 

images of defects in the metal cross sections using the convolution neural network (CNN) image labeling 

algorithm. Defects were classified into three categories: crack, porosity, and hole. To overcome a lack-of-data 

problem, the amount of learning data was augmented using a data augmentation algorithm. This augmentation 

algorithm can transform an image to 180 images, increasing the learning accuracy. The number of training 

and validation images was 25,920 (80 %) and 6,480 (20 %), respectively. An optimized case with a 

combination of fully connected layers, an optimizer, and a loss function, showed that the model accuracy was 

99.7 % and had a success rate of 97.8 % for 180 test images. In conclusion, image labeling was successfully 

performed and it is expected to be applied to automated AM process inspection and repair systems in the 

future.

Keywords : Deep Learning(딥러닝), CNN(순환 신경망), Data Augmentation(데이터 증폭), Image Labeling(이미

지 라벨링), Additive Manufacturing(적층제조)

# Corresponding Author : princaps@ajou.ac.kr

  Tel: +82-31-219-3652, Fax: +82-31-219-2528

- 7 -



Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling 

: 한국기계가공학회지 제19권, 제7호

�������������������������������������������������������������������������������������������������������������

and optimization is being studied. Furthermore, 

analysis techniques using deep learning algorithms[2]

that extract common properties from signals and 

conduct data-based inference experiments can be 

applied to the detection of surface defects[3] and 

image classification[4]. Furthermore, data processing 

speed has been improved with the advancement of 

computing power, accelerating the development of 

deep learning algorithms[5]. In this paper, the 

classification of metal cross-sectional defects is 

performed using the convolution neural network 

(CNN) algorithm[4], which is specialized in 

extracting and classifying image characteristics. 

Defects in typical metal additive manufacturing 

processes are common problems in powder bed 

fusion (PBF) and direct metal deposition (DMD); 

therefore, studies have been conducted to solve them 

as follows.

Scime et al.[6] found metal defects during a 

powder redistribution process based on monitoring 

images. The causes of these defects were classified 

into six categories: recoater hopping, recoater 

streaking, debris, super-elevation, part damage, and 

incomplete spreading.

Additionally, Gaja et al.[7] found defects in the 

DMD process such as cracking and porosity, which 

were detected and classified by analyzing peak 

amplitude, rise time, duration, and number of 

acoustic emission (AE) sensor signal counts.

When inexperienced people attempt to classify 

metal defects, it is difficult for them to decide 

which class to use. Thus, research has been done in 

other areas to assist human judgment with deep 

learning algorithms[8]. As a result, metal defects can 

also be detected more accurately if humans and AI 

interact closely. Furthermore, if the accuracy of such 

algorithms is improved, defects can be almost 

perfectly detected without the use of human 

resources. Therefore, if defects in the cross sections 

of metal additive manufacturing can be accurately 

classified using deep learning, the reliability of the 

final products can be improved and manpower 

efficiency increased.

In this paper, the unspecified defects were 

classified using image labeling based on the deep 

learning CNN. Defects were labeled as “crack”, 

“hole”, and “porosity”, and studies were conducted 

to classify them more accurately. In the process of 

preparing the training data, the method of 

augmenting a small number of data using 

augmentation is presented, and the process of 

converting images into binary data is described. To 

improve the accuracy of the algorithm, the case 

study was performed considering the structures of 

the optimizer, the loss function, and the fully 

connected layer. Furthermore, in an attempt to 

analyze problems such as overfitting or underfitting, 

the model accuracy derived from the image labeling 

algorithm was compared with the accuracy of the 

classification test using new images.

2. Training Data

Before building the learning data, to increase 

learning efficiency, images of various sizes were 

resized to 16,384 (128 × 128) pixels. Thus, an image 

had three RGB channels and consisted of 49,152 

pixels of data.

To construct a useful deep learning model, 

training errors and validation errors must be reduced. 

Therefore, training large amounts of data in 

algorithms that have many layers shows high labeling 

performance, but there is difficulty in obtaining many 

defect images. Insufficient data reduces the accuracy 

of the classification to an overfitting of the 

classification regression line[9]. Moreover, in terms of 

obtaining training data, it is difficult to get enough 

defect images that are section images of the metal. 

To solve the lack of data, a data augmentation 

method that increases the amount of training data is 

proposed[10]. Images can be rotated, warped, 

transformed geometrically and in color, randomly
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Fig. 1 Image augmentation by rotating from 0 to 180 

degrees

erased, and adversarial training can be used to 

amplify the data. Figure1 shows an image that has 

been rotated 5° from the center to create 36 rotated 

images from one image. It has also been moved 

from the center to the x, -x, y, and -y axes up to 1 

pixel and augmented five times, including the 

reference image, resulting in a single image of 180 

pieces. 

Algorithm training not only provides an 

opportunity to extract more information by 

recognizing the magnified images as different but can 

also produce an effect equivalent to training using 

several images[11]. Additionally, the magnified training 

images are stored as matrix data, which is the binary 

data set shown in Figure 2a. This format has been 

used mainly in the existing field of computer vision, 

where it has been used as a way of entering multiple 

data in machine learning[12]. The generated binary 

data contains pixel data and image label data. In 

conclusion, 25,920 (80 %) and 6,480 (20 %) image 

data sets were organized for training and validation.

3. Structure of the CNN Model

CNN, which is mainly used for image recognition 

as a type of deep learning tool, extracts image 

features by repeating the convolution and pooling 

layers. Following the purpose of use, the 

fully-connected layer of classification, segmentation, 

and object detection is applied[13]. In this paper, an 

image labeling algorithm that extracts and classifies 

the characteristics of images and labels is constructed 

(Figure 2b). Moreover, to prevent overfitting from 

occurring in the algorithm training process, drop-out 

layers that arbitrarily throw away nodes in the 

network are added[14]. In addition, the case study was 

conducted in terms of the training speed of 

convergence and the accuracy of the labeling 

algorithm according to the number of fully connected 

layers, the type of optimizer, and the loss function of 

the algorithm.

First, the fully connected layer is structured 

according to the number of layers and nodes, and the 

     (a) Binary structure                               (b) CNN Algorithm

Fig. 2 Configuration of image labeling algorithm
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information is exchanged between them as 

interconnected neurons. Each node has a weight and 

a bias that converge to have a similar probability 

distribution for the training data. Therefore, the 

greater the number of fully connected layers, the 

better the learning accuracy, but more learning time 

is required[15].

Second, the loss function can be divided into the 

cross-entropy and the mean square error function, 

with the former being used mainly because it 

converges faster than the latter[16]. Within the 

cross-entropy, there is a binary cross-entropy that 

executes binary classification and a categorical 

cross-entropy that performs multi-classification. The 

major difference between the two functions is the 

activation function. The binary cross-entropy uses the 

sigmoid function as shown in Equation (1) and the 

categorical cross-entropy uses the Softmax function as 

in Equation (2).

 
 


                              (1)


 
∑

 


 

                         (2)

Third, in the gradient descent method, which is a 

method for finding the global minimum, the speed 

and direction of the optimizer are very important. 

Particularly representative are RMSProp, which has

Table 1 List of algorithm configurations

Case
Fully

Connected 
Layer

Loss
Function Optimizer

Case 1 32 Binary
Cross Entropy Adam

Case 2 32
Categorical

Cross Entropy Adam

Case 3 32 Binary
Cross Entropy RMSprop

Case 4 128 Binary
Cross Entropy Adam

Case 5 512 Binary
Cross Entropy Adam

a fast convergence speed, and Adam, which is most 

widely used because of its fast convergence speed 

and outstanding direction[17].

The comparison is adjusted every 5 cases to the 

number of fully connected layers, whose numbers are 

32, 128, and 512. This comparison is also made 

considering the loss function (binary and categorical 

cross-entropy) and the optimizer (RMSProp and 

Adam), as shown in Table 1.

4. Training and Testing

4.1 Algorithm Training

Previous research related to CNN reported that 

significant learning time (hours to dozens of hours) 

is required for training image data[18]. Although 

high-performance hardware was required to process 

the data from 32,400 images in this study, it was 

possible to reduce computation time to minutes by 

using the Python 3 GPU accelerator from Google 

Colab (Open Cloud, Google). Image labeling 

algorithms configured for each case were trained 

and validated during 20 epochs with 25,200 (80 %) 

and 6,480 (20 %) images, respectively.

Convergence was also assessed according to the 

type of optimizer. Figures 3a and 3b show the 

results of the Adam and RMSprop optimizer. To 

simply introduce Adam, it has the same advantages 

of the Adargrad and RMSProp optimizers. Namely, 

because Adam’s step size is not affected by gradient 

and rescaling, any object function can stably 

converge. As a result, Adam and RMSProp 

optimizer had nearly the same convergence, but in 

the convergence process, the fluctuation of Adam 

was less[19]. The training time in all cases was 

nearly the same, taking between 6 and 7 seconds 

per epoch, according to the Google Colab GPU. 

Thus, the accuracy of the model in all cases was 

derived as shown in Table 2. Table 2 shows that 

Case 5, which consists of 512 fully connected l ayers
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Table 2 Comparison between model accuracy and 

test accuracy

Case Model Accuracy Test Accuracy

Case 1 98.2 % 93.3 %

Case 2 97.7 % 95.6 %

Case 3 88.7 % 86.7 %

Case 4 99.2 % 95.6 %

Case 5 99.7 % 97.8 %

and uses the binary cross-entropy loss function 

together with the Adam optimizer, shows the highest 

model accuracy of 99.7 %.

4.2 Training Model Performance Test

From a variance and bias point of view, the accuracy

Fig. 4 Test accuracy of the case 5

of the image labeling model needs to be confirmed 

whether it is underfitting or overfitting. Thus, an 

accuracy test was performed using 60 new input 

images showing crack, porosity, and hole defects. In 

the analysis of Case 5, the test accuracy can be 

determined as shown in Figure 4. For three labels, if 

a probability exceeds 50 %, the labeling is successful. 

If the judgment criterion is not satisfied, the labeling 

is failed. Accordingly, the test accuracy of each case 

is as shown in Table 2, and the test accuracy is 

depicted according to each class as shown in Figure 

5. Case 1 shows a higher model accuracy than Case 

2, but the accuracy test confirmed that Case 2 was 

more accurate. When the probability determined by 

the algorithm is higher, the actual performance tends 

to be better. The accuracy of the model can be 

overestimated with respect to the actual accuracy 

owing to problems such as overfitting in the learning 

and validation process. Thus, the test accuracy was 

confirmed to check and compare it with the model 

accuracy. As a result, the test accuracy of Case 5 

was 98 % compared to 99.7 % of the model 

accuracy and it was selected as the best labeling 

algorithm.

5. Result and Discussion

For the trained model of Case 5, the images in

(a) Case 1 (Adam)                              (b) Case 3 (RMSProp)     

Fig. 3 Learning curves by loss reduction
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(a) crack         (b) porosity        (c) hole

Fig. 6 Input images for testing

Figures 6a, 6b, and 6c are introduced and labeled 

as shown in Figure 7. A blurry image was 

accurately classified if it had a resolution that could 

retain the image features, as shown in Figure 7c. 

Consequently, the results of the label data numerical 

classification were obtained, which were 0, 1, and 

2. Moreover, the “crack”, “porosity”, and “hole” 

labels were given for that class, and an additional 

solution was introduced to suggest the following 

process. If this is applied to the automation process, 

a system can detect the defects and solve them 

independently. In other words, it can help detect 

and classify defects that depend on human 

judgment, or it can be performed independently.

Additionally, in this paper, a numerical basis was 

needed to determine whether algorithm learning was 

occurring correctly. Thus, the reliability of the 

learning results was identified by comparing them 

with the accuracy of the algorithm by performing 

labeling with a new image to evaluate the accuracy 

(a) Crack

(b) Porosity 

(c) Hole

Fig. 7 Image labeling results using Case 5 algorithm

Fig. 5 Comparison between model accuracy and test accuracy about all cases
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of the test. Additionally, the advantage of the image 

labeling CNN algorithm is that it allows an easy 

classification of different types of defects by 

understanding the characteristic features of the 

images. However, from a different point of view, if 

multiple defects are detected in an image, it has the 

problem of detecting only one type of defect, which 

is the most dominant characteristic. In other words, 

when representative defects are important depending 

on the processing system, it is appropriate to use 

image labeling. However, to detect detailed defects, 

it was considered that models such as YOLOv3 or 

RetinaNet, which are types of multi-object detection 

algorithms, could detect all of them. Multi-object 

detection has the disadvantage of having to 

manually make the defect bounding box to produce 

the training data, but it has the advantage of being 

able to find and label all the defects in an 

image[20].

6. Conclusion

In this paper, to detect defects and repair them in 

a process worked layer-by-layer as in AM, defects 

in the cross-section image were classified and 

automatic restoration was suggested using the CNN 

algorithm. To increase model accuracy, large 

amounts of training data were made from missing 

images using the data augmentation method, and the 

CNN image labeling algorithm was trained with 

augmented training data. Afterward, to find the 

optimal condition of the labeling algorithm, a case 

study was performed by combining the number of 

the fully connected layers, the loss function, and the 

algorithm optimizer. As a result, the optimal model 

in the case study was able to obtain a model 

accuracy of 99.7 % using algorithms learned from a 

probability distribution close to the training data.

However, as the learning model may have an 

overfitting or underfitting problem, it is necessary to 

evaluate the actual accuracy to evaluate it. In each 

case, 60 new images were introduced and the actual 

accuracy was tested. Comparing case 1 and 2, it 

was confirmed that the test accuracy was reversed 

differently from the model accuracy. Therefore, 

testing is essential for estimating the algorithm more 

precisely. As a result, Case 5 was verified to have 

the highest accuracy, and in other cases, according 

to the optimizer or the lack of the number of fully 

connected layers, situations occurred in which the 

images were misjudged. It was also confirmed that 

binary-cross entropy can distinguish between 

common features such as porosity and hole, which 

have the same circularity.

Finally, labeling and post-processing were 

introduced in the most accurate Case 5, and the real 

defects were estimated by Case 5. As a result, it 

was observed that the CNN algorithm can classify 

defects and suggest post-processes according to the 

defects. Although the numerical judgment standard 

of the algorithm was suggested by the test accuracy, 

if training courses in the model algorithm were 

visualized, the model could have been judged more 

accurately. However, it was difficult to visualize the 

learning process of the algorithm model in real-time. 

Therefore, in the future, the judgment standard of 

the algorithm model will be suggested by 

visualizing the training step in the algorithm.

Finally, this study made it possible to classify the 

defects based on images, and confirmed that 

post-processing can be performed continuously if the 

solution is introduced according to the class of the 

defect. If in the future the image labeling algorithm 

is applied to the automation process, it is expected 

that the system will be able to find the defects and 

perform the follow-up process by itself, and 

consequently improve the quality of the final result.
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