• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.033 seconds

Multi-focus Image Fusion Technique Based on Parzen-windows Estimates (Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법)

  • Atole, Ronnel R.;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.

  • PDF

A Design and Implementation of Learning System to Support Indoor and Outdoor Field Trips Using RFID Mobile Device (RFID 모바일 기기용 실내.외 체험학습 시스템 설계 및 구현)

  • Yu, Jeong-Su;Baek, Hyeon-Gi
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.4
    • /
    • pp.527-536
    • /
    • 2010
  • Ubiquitous computing and mobile technologies provide much scope for designing innovative learning experiences that can take place in a variety of indoor and outdoor settings, such as botanical gardens, parks, museums and classrooms. In this paper, we present our own innovative work for bridging indoor and outdoor field-trip learning activities with the support of RFID with reader device on ubiquitous environments. The function of our system is based on strategically located RFID tags placed on objects around settings which are identified using the mobile device installed to an RFID reader. The mobile device reads the RFID tag and sends the learner's request to the field-trip learning system. And learners can be learning activities according to theirs learning levels. We also focus on the use of intelligent agents to customize learning contents for individual learners. The result of our experiment indicates that learner enjoyed learning where mobile devices are used in the system, supporting the learning activities in the context of which they are taking place.

  • PDF

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1312-1317
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘)

  • 문정욱;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1318-1324
    • /
    • 2003
  • There are two problems in the conventional ART1 algorithm. One is in similarity testing method of the conventional ART1 between input patterns and stored patterns. The other is that vigilance threshold of conventional ART1 influences the number of clusters and the rate of recognition. In this paper, new similarity testing method and dynamical vigilance threshold method are proposed to solve these problems. The former is similarity test method using the rate of norm of exclusive-NOR between input patterns and stored patterns and the rate of nodes have equivalence value, and the latter method dynamically controls vigilance threshold to similarity using fuzzy operations and the sum operation of Yager. To check the performance of new methods, we used 26 alphabet characters and nosed characters. In experiment results, the proposed methods are better than the conventional methods in ART1, because the proposed methods are less sensitive than the conventional methods for initial vigilance and the recognition rate of the proposed methods is higher than that of the conventional methods.

Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network (시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발)

  • Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Hybrid metrics model to predict fault-proneness of large software systems (대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2005
  • Criticality prediction models that identify fault-prone spots using system design specifications play an important role in reducing development costs of large systems such as telecommunication systems. Many criticality prediction models using complexity metrics have been suggested. But most of them need training data set for model training. And they are classification models that can only classify design entities into fault-prone group and non fault-prone group. To solve this problem, this paper builds a new prediction model, HMM, using two styled hybrid metrics. HMM has strong point that it does not need training data and it enables comparison between design entities by criticality. HMM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering internal characteristics and accuracy of prediction.

  • PDF

Sigmoid Curve Model for Software Test-Effort Estimation (소프트웨어 시험 노력 추정 시그모이드 모델)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.885-892
    • /
    • 2004
  • Weibull distribution Iincluding Rayleigh and Exponential distribution is a typical model to estimate the effort distribution which is committed to the software testing phase. This model does not represent standpoint that many efforts are committed actually at the test beginning point. Moreover, it does not properly represent the various distribution form of actual test effort. To solve these problems, this paper proposes the Sigmoid model. The sigmoid function to be applicable in neural network transformed into the function which properly represents the test effort of software in the model. The model was verified to the six test effort data which were got from actual software projects which have various distribution form and verified the suitability. The Sigmoid model nay be selected by the alternative of Weibull model to estimate software test effort because it is superior than the Weibull model.

Fast Modulation Classifier for Software Radio (소프트웨어 라디오를 위한 고속 변조 인식기)

  • Park, Cheol-Sun;Jang, Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.425-432
    • /
    • 2007
  • In this paper, we deals with automatic modulation classification capable of classifying incident signals without a priori information. The 7 key features which have good properties of sensitive with modulation types and insensitive with SNR variation are selected. The numerical simulations for classifying 9 modulation types using the these features are performed. The numerical simulations of the 4 types of modulation classifiers are performed the investigation of classification accuracy and execution time to implement the fast modulation classifier in software radio. The simulation result indicated that the execution time of DTC was best and SVC and MDC showed good classification performance. The prototype was implemented with DTC type. With the result of field trials, we confirmed the performance in the prototype was agreed with the numerical simulation result of DTC.

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.