• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Prediction of the Top-bead width of Tandem GMA Welding Processes Using the STACO Model (STACO 모델을 이용한 탄템 GMA 용접공정의 표면비드 폭 예측)

  • Lee, Jong Pyo;Park, Min Ho;Kim, Do Hyeong;Jin, Byeong Ju;Son, Joon Sik;Kang, Bong Yong;Shim, Ji Yeon;Kim, Ill Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Tandem arc welding is a guarantor for high efficiency and cost saving since the quantity of wire which is deposited in the welding is approximated 30% greater that in conventional welding. The welding process is now being successfully applied in many industries. However, in the case of tandem arc welding, good quality and high productivity should depend on the welding parameters. Therefore, an intelligent algorithms for the automatic tandem arc welding process has been necessarily required. In this study, a predictive model based on the neural network by using the data acquired during tandem gas metal arc (GMA) welding process has been developed. To verify the reliability of the developed predictive model, a mutual comparison with the surface of the top-bead width obtained from actual experiments has been analyzed.

Estimation of a Nationwide Statistics of Hernia Operation Applying Data Mining Technique to the National Health Insurance Database (데이터마이닝 기법을 이용한 건강보험공단의 수술 통계량 근사치 추정 -허니아 수술을 중심으로-)

  • Kang, Sung-Hong;Seo, Seok-Kyung;Yang, Yeong-Ja;Lee, Ae-Kyung;Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.5
    • /
    • pp.433-437
    • /
    • 2006
  • Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Algorithm for Predicting Functionally Equivalent Proteins from BLAST and HMMER Searches

  • Yu, Dong Su;Lee, Dae-Hee;Kim, Seong Keun;Lee, Choong Hoon;Song, Ju Yeon;Kong, Eun Bae;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1054-1058
    • /
    • 2012
  • In order to predict biologically significant attributes such as function from protein sequences, searching against large databases for homologous proteins is a common practice. In particular, BLAST and HMMER are widely used in a variety of biological fields. However, sequence-homologous proteins determined by BLAST and proteins having the same domains predicted by HMMER are not always functionally equivalent, even though their sequences are aligning with high similarity. Thus, accurate assignment of functionally equivalent proteins from aligned sequences remains a challenge in bioinformatics. We have developed the FEP-BH algorithm to predict functionally equivalent proteins from protein-protein pairs identified by BLAST and from protein-domain pairs predicted by HMMER. When examined against domain classes of the Pfam-A seed database, FEP-BH showed 71.53% accuracy, whereas BLAST and HMMER were 57.72% and 36.62%, respectively. We expect that the FEP-BH algorithm will be effective in predicting functionally equivalent proteins from BLAST and HMMER outputs and will also suit biologists who want to search out functionally equivalent proteins from among sequence-homologous proteins.

Study on the estimation and representation of disparity map for stereo-based video compression/transmission systems (스테레오 기반 비디오 압축/전송 시스템을 위한 시차영상 추정 및 표현에 관한 연구)

  • Bak Sungchul;Namkung Jae-Chan
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.576-586
    • /
    • 2005
  • This paper presents a new estimation and representation of a disparity map for stereo-based video communication systems. Several pixel-based and block-based algorithms have been proposed to estimate the disparity map. While the pixel-based algorithms can achieve high accuracy in computing the disparity map, they require a lost of bits to represent the disparity information. The bit rate can be reduced by the block-based algorithm, sacrificing the representation accuracy. In this paper, the block enclosing a distinct edge is divided into two regions and the disparity of each region is set to that of a neighboring block. The proposed algorithm employs accumulated histograms and a neural network to classify a type of a block. In this paper, we proved that the proposed algorithm is more effective than the conventional algorithms in estimating and representing disparity maps through several experiments.

A Study on Development of a Prediction Model for Korean Music Box Office Based on Deep Learning (딥러닝을 이용한 음악흥행 예측모델 개발 연구)

  • Lee, Do-Yeon;Chang, Byeng-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.10-18
    • /
    • 2020
  • Among various contents industry, this study especially focused on music industry and tried to develop a prediction model for music box office using deep learning. The deep learning prediction model designed to predict music chart-in period based on 17 variables -singer power, singer influence, featuring singer power, featuring singer influence, number of participating singers, gender of participating singers, lyric writer power, composer power, arranger power, production agency power, distributing agency power, title track, LIKEs on streaming platform, comments on streaming platform, pre-promotion article, teaser-video view, first-week performance. Additionally we conducted a linear regression analysis to sort out factors, and tried to compare the prediction performance between the original DNN prediction model and the DNN model made of sorted out factors.

Automatic Recognition in the Level of Arousal using SOM (SOM 이용한 각성수준의 자동인식)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2011
  • The purpose of the study was to suggest automatic recognition of the subject's level of arousal into high arousal and low arousal with neural network SOM learning. The automatic recognition in the level of arousal is composed of three stages. First, it is a stage of ECG measurement and analysis. It measures the subject playing a shooting game with ECG and extracts characteristics for SOM learning. Second, it is a stage of SOM learning. It learns input vectors extracting characteristics. Finally, it is a stage of arousal recognition which recognize the subject's level of arousal when new vectors are input after SOM learning is completed. The study expresses recognition results in the level of arousal and the level of arousal in numerical value and graph when SOM learning results in the level of arousal and new vectors are input. Finally, SOM evaluation was analyzed average 86% by comparing emotion evaluation results of the existing research with automatic recognition results of SOM in order. The study could experience automatic recognition with other levels of arousal by each subject with SOM.

  • PDF

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

Increasing Splicing Site Prediction by Training Gene Set Based on Species

  • Ahn, Beunguk;Abbas, Elbashir;Park, Jin-Ah;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2784-2799
    • /
    • 2012
  • Biological data have been increased exponentially in recent years, and analyzing these data using data mining tools has become one of the major issues in the bioinformatics research community. This paper focuses on the protein construction process in higher organisms where the deoxyribonucleic acid, or DNA, sequence is filtered. In the process, "unmeaningful" DNA sub-sequences (called introns) are removed, and their meaningful counterparts (called exons) are retained. Accurate recognition of the boundaries between these two classes of sub-sequences, however, is known to be a difficult problem. Conventional approaches for recognizing these boundaries have sought for solely enhancing machine learning techniques, while inherent nature of the data themselves has been overlooked. In this paper we present an approach which makes use of the data attributes inherent to species in order to increase the accuracy of the boundary recognition. For experimentation, we have taken the data sets for four different species from the University of California Santa Cruz (UCSC) data repository, divided the data sets based on the species types, then trained a preprocessed version of the data sets on neural network(NN)-based and support vector machine(SVM)-based classifiers. As a result, we have observed that each species has its own specific features related to the splice sites, and that it implies there are related distances among species. To conclude, dividing the training data set based on species would increase the accuracy of predicting splicing junction and propose new insight to the biological research.

Face Detection using Adaptive Skin Region Extraction (적응적 피부영역 검출을 이용한 얼굴탐지)

  • Hwang, Dae-Dong;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.35-44
    • /
    • 2010
  • In this paper, we propose a method about producing skin color model adaptively in input image and face detection. The principle process which we proposed is finding eyes candidates by applying the eye features to neural network, and then using the around color to find the distribution of color value. There will be a verification process that producing face region by using color value distribution which is detected as skin region and find mouth candidate in corresponding face region; if eye candidate and mouth candidate's connection structure is similar with face structure, then it can be judged as a face. Because this method can detect skin region adaptively by finding eyes, we solve the rate of false positive about the distorted skin color which is used by existing face detection methods. The experiment was performed about detecting the eye, the skin, the mouth and the face individually. The results revealed that the proposed technique is better than the traditional techniques.