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In order to predict biologically significant attributes such

as function from protein sequences, searching against

large databases for homologous proteins is a common

practice. In particular, BLAST and HMMER are widely

used in a variety of biological fields. However, sequence-

homologous proteins determined by BLAST and proteins

having the same domains predicted by HMMER are not

always functionally equivalent, even though their sequences

are aligning with high similarity. Thus, accurate assignment

of functionally equivalent proteins from aligned sequences

remains a challenge in bioinformatics. We have developed

the FEP-BH algorithm to predict functionally equivalent

proteins from protein-protein pairs identified by BLAST

and from protein-domain pairs predicted by HMMER.

When examined against domain classes of the Pfam-A

seed database, FEP-BH showed 71.53% accuracy, whereas

BLAST and HMMER were 57.72% and 36.62%, respectively.

We expect that the FEP-BH algorithm will be effective in

predicting functionally equivalent proteins from BLAST

and HMMER outputs and will also suit biologists who

want to search out functionally equivalent proteins from

among sequence-homologous proteins.

Keywords: Functionally equivalent protein, error back-

propagation algorithm, sequence-based method, artificial
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Given that high-throughput sequences are generated in

exponential quantities by next-generation or third-generation

sequencing technologies with state-of-the-art computing

resources [13, 26], many biologists utilize bioinformatics

tools to predict the functions of unknown protein sequences.

Specifically, BLAST [1] and HMMER [4] are widely

employed for carrying out biological research tasks, such

as pathway prediction, genome annotation, and phylogenetic

analysis, all of which depend on fast computational

performance and reliable accuracy [2, 6, 10-11].

BLAST searches out highly aligned subsequence regions

in a pair of sequences, using substitution matrices such as

BLOSUM and PAM [1]. Like BLAST, HMMER also

identifies conserved regions, but it uses profiles for the

patterns of conserved domains. These profiles are built

with a hidden Markov model (HMM) [4], with the

Needleman-Wunsch algorithm [20], or with the Smith-

Waterman algorithm [23]. Both BLAST and HMMER are

based on the concept that functional domains of proteins

are conserved in the protein sequence, and both report the

degree of sequence similarity for aligned sequence pairs by

using numerical values such as percent identity, e-value,

and matching score. These numerical values have been

used as thresholds for predicting functionally similar

proteins.

Equivalogs are defined as members of a set of homologous

proteins that are conserved with respect to function since

their last common ancestor [7]. However, not all well-

aligned and high-scoring pairs are functionally equivalent

proteins (FEPs), and some of them may be false-positive

or false-negative FEPs [24]. Analysis of protein-protein

pairs with BLAST and protein-domain pairs with

HMMER has revealed that some FEPs have a relatively

low matching score and low percent identity in BLAST

(Fig. 1A and 1B), with HMMER giving similar results

(Fig. 1C and 1D). They indicate that patterns of sequence

conservation may vary, despite functional equivalence. It is
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difficult to determine a uniform threshold among numerical

values, making many biologists use just one of them [17,

22]. However, the numerical values collectively indicate the

degree of sequence similarity. Accordingly, we can postulate

that these values are correlated to one another and that, if

the correlation among numerical values is determined based

on a training set of FEPs, the determined correlation should

predict FEPs from BLAST and HMMER.

On the basis of this assumption, we have designed the

FEP-BH algorithm to predict FEPs from protein-protein

pairs generated by BLAST and from protein-domain pairs

generated by HMMER. FEP-BH uses patterns among the

numerical values of the BLAST and HMMER outputs, and

determines the types of correlation using the error back-

propagation (EBP) algorithm [21] with the equivalogs

from TIGRFAMs [7].

MATERIALS AND METHODS

EBP Algorithm and EBP-Trained Weight Matrices

FEP-BH uses the EBP algorithm as a preprocessing step to establish

the patterns of correlation among the numerical values for protein-

protein pairs from BLAST and for protein-domain pairs from

HMMER. EBP has been used for a variety of analyses, including

clustering and pattern recognition [8, 16]. In biological fields, the

EBP algorithm has also been widely used to predict biological

information, such as protein solubility, protein-protein interactions,

and prokaryotic transcription terminators [14, 18, 19]. Although the

EBP algorithm requires many iterations and extensive training time,

we have used it to train the weight matrices with the mixed and

challenging data sets produced by BLAST and HMMER, because

the EBP algorithm is well-suited for imbalanced data sets [21].

In our algorithm, EBP was built using a bridged multilayer

perceptron (BMLP) topology [25] and it generates EBP-trained

weight matrices as the pattern to distinguish FEPs among the

numerical values (Fig. 2). When sets of BLAST or HMMER pairs

are separately used for training with the EBP algorithm, 5 numerical

values of BLAST (percent identity, number of mismatches, bit score,

coverage, and e-value) are used to train the matrices as input

perceptrons for BLAST, whereas 13 values of numerical values of

HMMER are used to train the matrices for HMMER, including

sequence score, sequence bias, domain score, identity, coverage, e-

value, c-evalue, and i-evalue. All input perceptron values are

normalized to a range from 0 to 1, because the values otherwise

have different ranges. In the FEP-BH algorithm, EBP-trained weight

matrices are used to assign a pair to 1 of 3 classes: FEP, non-FEP

(assigned if the pair is not in the same equivalog group), and

candidate (undetermined whether the pair is a FEP or not). Although

some of non-FEPs can be the potential FEPs as members of a

superfamily, we did not consider them as equivalogs.

FEP-BH Algorithm

The FEP-BH algorithm follows a simple progression. First, it predicts

FEPs, non-FEPs, and candidates from BLAST or HMMER pairs,

using EBP-trained weight matrices. Second, the algorithm merges

the FEPs, non-FEPs, and candidates from BLAST with those from

HMMER. That is, the non-FEPs and the candidates assigned with

the EBP-trained weight matrices for BLAST are reassigned to one

of the classes determined by the matrices for HMMER. Finally, the

merged FEPs, non-FEPs, and candidates are output.

Since the training is completed as preprocessing, FEP-BH does

not retrain with each set of protein-protein (or -domain) pairs from

BLAST and HMMER. Therefore, if the EBP-trained weight

matrices are already constructed, FEP-BH can perform quickly to

predict FEPs and non-FEPs from unknown protein-protein pairs

and protein-domain pairs. In addition, FEP-BH does not require

Fig. 1. Distribution of functionally equivalent protein (FEP)  pairs
(A and C) and non-FEP pairs (B and D) predicted from protein-
protein pairs generated by BLAST and from protein-domain
pairs generated by HMMER against 5,278 proteins of equivalogs
in TIGRFAMs. 
x-Axis, percent identity (BLAST and HMMER) for the aligned region

(HMMER); y-axis, bit score (BLAST) or domain score (HMMER).

Fig. 2. Architecture of the error back-propagation (EBP) algorithm.
Cxy is the weight matrix for the edge from x to y, with the layers denoted as

follows: i, input; h, hidden; and o, output.
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any threshold values for coverage, percent identity, bit score, or e-

value in order to predict FEPs, because EBP-trained weight matrices

are performed as the threshold and do not require additional

experimental information for sequences or other tasks, such as

matching EC numbers or protein names or using another database;

it can reduce the effort required to predict FEPs.

Training and Test Data Set

The choice of training data sets for the EBP-trained weight matrices

for BLAST and HMMER is important to the accuracy of the FEP

predictions, which rely on the matrices. Therefore, a training data

set should be exactly defined about whether paired proteins are

FEPs of each other or not and also should include many FEPs and

non-FEPs with various qualities, in order to increase the accuracy of

training and to avoid overfitting and local optimization. In this

sense, equivalogs from TIGRFAMs are quite suitable as components

of the training data set, because equivalogs are sets of proteins that

are homologous with respect to conserved function since the last

common ancestor [7]. We selected 1,291 equivalogs from TIGRFAMs

(release version 11.0), composed of 5,278 Swiss-Prot protein

sequences [7, 12], and they were used to construct the training data

sets. The training data set for BLAST consisted of 103,749 protein

pairs, which were generated by “all vs. all” blastp in BLAST and

selected with the highest bit score among the same protein-protein

pairs. The training data set for HMMER consisted of 15,436

protein-domain pairs, which were generated by hmmsearch in

HMMER against the selected TIGRFAMs HMM profiles and

selected by the same way of BLAST (Table 1).

During 100 rounds of weight matrix training for every equivalog

using leave-one-out cross-validation (LOOCV) across the training

data set [3], the average mean squared error (MSE) tended toward

stability at around 0.14 for BLAST and 0.05 for HMMER (Fig. 3).

Although local optimization with the EBP algorithm was not

overcome within 100 rounds, we were able to achieve reliable EBP-

trained weight matrices for which the average MSE for the training

data set was stable at around 0.069 (BLAST) and 0.037 (HMMER).

Independent of the training data sets, we constructed a test data set

using the Pfam-A seed database [5]. The purpose of the test data

sets is to examine the accuracy of FEP predictions for unknown

pairs from BLAST and HMMER. The Pfam-A seed database is

composed of curated classes, domains, and families, and it provides

profiles for HMMER. We selected 39,854 Swiss-Prot proteins in

2,999 domain classes from the Pfam-A seed database (release version

26.0), and both the test data sets for BLAST and HMMER consisted

of 3,024,627 protein-protein pairs generated by “all vs. all” blastp

and 124,943 protein-domain pairs generated by hmmsearch against

the Pfam-A-derived HMM profiles, respectively (Table 1).

RESULTS

When examining the training data set, the FEP-BH

algorithm showed 93.75% accuracy, whereas the accuracy

values for BLAST and HMMER were 40.76% and

34.19%, respectively, when no threshold was used for any

numerical value (Table 2). These results indicate FEP-BH

to be well-trained and well-performing. However, they do

not ensure the accuracy of FEP-BH for unknown proteins

because FEP-BH uses EBP-trained weight matrices

trained with the training data set. Thus, we tried to

examine the accuracy of the algorithm on a test data set.

As with the training data set, FEP-BH showed strong

performance, with 71.53% accuracy, whereas BLAST was

57.72% and HMMER was 36.62% without any threshold.

Furthermore, we tried comparing FEP-BH with a

combination of BLAST and HMMER. Since FEP-BH

merges the FEPs, non-FEPs, and candidates of BLAST

and HMMER, we can expect that the combination of

BLAST and HMMER will also have higher accuracy than

either BLAST or HMMER alone. In addition, we applied a

bit-score cut-off as a threshold to select the best FEP

predictions from BLAST alone and from a combination of

BLAST and HMMER. As shown in Fig. 4, FEP-BH

performed better than either BLAST alone or the

combination of BLAST and HMMER on both the training

data set (Fig. 4A) and the test data set (Fig. 4B). The

accuracy was far better for FEP-BH than for BLAST or for

the combination of BLAST and HMMER, using bit-score

thresholds ranging from 0 to 200. Moreover, even though

BLAST and the BLAST-HMMER combination were

maximally 67.93% and 69.57% accurate at a bit-score

threshold of 50 in the test data set, their accuracies were

below that of FEP-BH. When the bit score increased over

200, FEP-BH, BLAST, and the combination of BLAST

Table 1. Training and test data sets.

Count Training data set Test data set

Classes 1,291 2,999

Proteins 5,278 39,854

Pairs BLAST HMMER BLAST HMMER

Total 103,749 15,436 3,024,627 124,943

FEPs 42,288 5,277 1,745,878 45,760

Non-FEPs 61,461 10,159 1,278,749 79,183

Fig. 3. Average mean squared error (MSE) for validation of the
EBP algorithm. 
Red, BLAST; black, HMMER; solid, LOOCV; dash-dots, the training

data set.
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and HMMER converged similarly for both the training and

the test data sets. Although FEP-BH performs better than

the other methods, it showed 71.53% accuracy for the

Pfam-A seed database, which is lower than the one for the

training data set and BLAST (Table 2). In a strict sense,

Pfam-A seed is not a database for FEPs but contains

clusters of proteins with the same domain. Therefore, some

of the Pfam-A seed proteins in the same domain class may

be non-FEPs, and a lot of proteins have multiple domains.

DISCUSSION

Predicting FEPs using sequence-based methods such as

BLAST and HMMER is an important challenge in the

fields of biology and bioinformatics, because currently

available sequence-based methods only suggest homologous

proteins. We have developed the FEP-BH algorithm to

predict FEPs from protein-protein pairs generated by

BLAST and from protein-domain pairs generated by

HMMER. The FEP-BH algorithm uses weight matrices

trained against numerical values of BLAST and HMMER

using the EBP algorithm [21]. Although the numerical

values are mathematically correlated (e.g., bit score and e-

value), their values are not always in parallel. The EBP

algorithm can be suitable to determine the pattern among

unparallel numerical values because of training against

various data sets. FEP-BH does not require experimental

evidence or numerical value thresholds for FEP prediction.

Therefore, preprocessed FEP-BH can perform efficiently,

by reducing the otherwise substantial effort required to

predict FEPs.

We searched for other applications to compare with our

algorithm and identified some utilities related to FEPs,

namely FOSTA [15] and Visalign [9]. However, neither

FOSTA nor Visalign is suitable for predicting FEPs from

Table 2. Prediction of FEP against the training and test data sets.

Statisticsa
Training data set Test data set

FEP-BH BLAST
b

HMMER
b

FEP-BH BLAST
b

HMMER
b

TP 41,601 42,288 5,277 1,319,342 1,745,878 45,760

TN
c

55,608 0 0 822,040 0 0

FP 5,853 61,461 10,159 447,983 1,278,749 79,183

FNc 628 0 0 404,292 0 0

Candidate 59 0 0 30,970 0 0

Sensitivity 0.9851 1.0000 1.0000 0.7654 1.0000 1.0000

Specificity 0.9048 0.0000 0.0000 0.6473 0.0000 0.0000

Accuracy 0.9375 0.4076 0.3419 0.7153 0.5772 0.3662

a
TP, true positive; TN, true negative; FP, false positive; FN, false negative; Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Accuracy = (TP + TN)/

(TP + TN + FP + FN).
b
These methods were preformed without any threshold.
c
Since the training and test data sets are composed only of pairs from BLAST and HMMER, TN and FN from BLAST and HMMER are zero.

Fig. 4. Accuracy for the FEP-BH algorithm (red), BLAST (blue),
and a combination of BLAST and HMMER (green) run against
the training (A) and test (B) data sets. 
FEP-BH does not require any threshold, but BLAST alone and the

combination of BLAST-HMMER may require thresholds to identify a

maximum number of FEPs. Therefore, in order to examine FEP-BH as

well as to find the best threshold for BLAST or BLAST-HMMER in

combination, we arbitrarily applied a BLAST bit score as a threshold.

HMMER was not compared with FEP-BH because the output format of

HMMER is different from that of BLAST.
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unknown proteins because FOSTA uses BLAST with a

text-mining approach to compare the prefix names of

proteins, the EC numbers, and the product names, and

Visalign is intended to analyze the aligned pattern among

FEPs, not to predict FEPs. Therefore, we were unable to

compare FEP-BH with them.

Many biologists want to predict function from protein

sequences through homology searches. Since FEP-BH can

be applied to a variety of biological fields in which

BLAST and HMMER are used, we expect that FEP-BH

can be an application that fulfills biologists’ demand of

effectively and accurately finding functionally equivalent

proteins among homologous sequences.
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