• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.038 seconds

Statistical Information-Based Hierarchical Fuzzy-Rough Classification Approach (통계적 정보기반 계층적 퍼지-러프 분류기법)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.792-798
    • /
    • 2007
  • In this paper, we propose a hierarchical fuzzy-rough classification method based on statistical information for maximizing the performance of pattern classification and reducing the number of rules without learning approaches such as neural network, genetic algorithm. In the proposed method, statistical information is used for extracting the partition intervals of antecedent fuzzy sets at each layer on hierarchical fuzzy-rough classification systems and rough sets are used for minimizing the number of fuzzy if-then rules which are associated with the partition intervals extracted by statistical information. To show the effectiveness of the proposed method, we compared the classification results(e.g. the classification accuracy and the number of rules) of the proposed with those of the conventional methods on the Fisher's IRIS data. From the experimental results, we can confirm the fact that the proposed method considers only statistical information of the given data is similar to the classification performance of the conventional methods.

(Efficient Methods for Combining User and Article Models for Collaborative Recommendation) (협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법)

  • 도영아;김종수;류정우;김명원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.540-549
    • /
    • 2003
  • In collaborative recommendation two models are generally used: the user model and the article model. A user model learns correlation between users preferences and recommends an article based on other users preferences for the article. Similarly, an article model learns correlation between preferences for articles and recommends an article based on the target user's preference for other articles. In this paper, we investigates various combination methods of the user model and the article model for better recommendation performance. They include simple sequential and parallel methods, perceptron, multi-layer perceptron, fuzzy rules, and BKS. We adopt the multi-layer perceptron for training each of the user and article models. The multi-layer perceptron has several advantages over other methods such as the nearest neighbor method and the association rule method. It can learn weights between correlated items and it can handle easily both of symbolic and numeric data. The combined models outperform any of the basic models and our experiments show that the multi-layer perceptron is the most efficient combination method among them.

Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable (전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교)

  • Park, Seong-Hee;Jeong, Hae-Eun;Lim, Kee-Joe;Kang, Seong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.

A Study on the Novel Optical/Digital Invariant Recognition for Recognizing Patterns with Straight Lines (직선패턴 인식을 위한 새로운 광/디지틀 불변 인식에 관한 연구)

  • Huh, Hyun;Jung, Dong-Gyu;Kang, Dong-Seung;Pan, Jae-Kyung;,
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.116-123
    • /
    • 1994
  • A novel opto-digital pattern recognition method which has shift, rotation, and scale invariant properties is proposed for recognizing two dimensional images having straight lines. The algorithm is composed of three stages. In the first stage the line features of the image are extracted. The second stage imposes the shift, rotation, and scale invariant properties on the extracted features through normalizing procedure. The required normalizing equations are analytically explained. In the last stage, the artificial feedforward neural network is trained with the extracted features. In order to evaluated the proposed algorithm, nine different edge enhnaced binary images composed of straight lines are tested. Thus the proposed algorithm can recognize the patterns event though they are shifted, rotated, and scaled.

  • PDF

Korean isolated word recognizer using new time alignment method of speech signal (새로운 시간축 정규화 방법을 이용한 한국어 고립단어 인식기)

  • Nam, Myeong-U;Park, Gyu-Hong;No, Seung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • This paper suggests new method to get fixed size parameter from different length of voice signals. The efficiency of speech recognizer is determined by how to compare the similarity(distance of each pattern) of the parameter from voice signal. But the variation of voice signal and the difference of speech speed make it difficult to extract the fixed size parameter from the voice signal. The method suggested in this paper is to normalize the parameter at fixed size by using the 2 dimension DCT(Discrete Cosine Transform) after representing the parameter by spectrogram. To prove validity of the suggested method, parameter extracted from 32 auditory filter-bank(it estimates auditory nerve firing probabilities) is used for the input of neural network after being processed by 2 dimension DCT. And to compare with conventional methods, we used one of conventional methods which solve time alignment problem. The result shows more efficient performance and faster recognition speed in the speaker dependent and independent isolated word recognition than conventional method.

  • PDF

A Study on the New Partial Discharge Pattern Analysis System used by PA Map (Pulse Analysis Map) (PA Map(Pulse Analysis Map)을 이용한 새로운 부분방전 패턴인식에 관한 연구)

  • Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1092-1098
    • /
    • 2007
  • Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

Screening of SrO-B2O3-P2O5 Ternary System by Combinatorial Chemistry and QSAR (조합화학과 QSAR를 이용한 SrO-B2O3-P2O5 3원계 청색형광체 개발)

  • Yoo, Jeong-Gon;Back, Jong-Ho;Cho, Sang-Ho;Sohn, Kee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.391-398
    • /
    • 2005
  • It is known that $BaMgAl_{10}O_{17}:Eu^{2+}(BAM)$ phosphors currently used have a serious thermal degradation problem. We screened $SrO-B_2O_3-P_2O_5$ system by a solution combinatorial chemistry technique in an attempt to search for a thermally stable blue phosphor for PDPs. A Quantitative Structure Activity Relationship (QSAR) was also obtained using an artificial neural network trained by the result fiom the combinatorial screening. As a result, we proposed a promising composition range in the $SrO-B_2O_3-P_2O_5$ ternary library. These compositions crystallized into a single major phase, $Sr_6BP_5O_{20}:Eu^{2+}$. The structure of $Sr_6BP_5O_{20}:Eu^{2+}$ was clearly determined by ab initio calculation. The luminescent efficiency of $Sr_6BP_5O_{20}:Eu^{2+}$ was 2.8 times of BAM at Vacuum Ultra Violet (VUV) excitation. The thermal stability was also good but the CIE color chromaticity was slightly poor.

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.